Abstract

The use of integrally blisk is becoming popular because of the advantages in aerodynamic efficiency and mass reduction. However, in an integrally blisk, the lack of the contact interface leads to a low structural damping compared to an assembled bladed disk. One emerging damping technique for the integrally blisk is based on the use of friction ring damper, which exploits the contact interfaces at the underneath of the disk. In this paper, three different geometries of the ring dampers are investigated for damping enhancement of a blisk. A full-scale compressor blisk is considered as a case study where a node-to-node contact model is used to compute the contact forces. The dynamic behavior of the blisk with the ring damper is investigated by using nonlinear modal analysis, which allows a direct estimation of the damping generated by the friction interface. The damping performance for the different ring dampers is evaluated and compared. It appears that the damping efficiency as well as the shift in the resonant frequency for the different geometries is highly related to the nodal diameter and contact pressure/gap distributed within contact interface. The geometry of the ring damper has significant impact on the damping performance.

References

1.
Yuan
,
J.
,
Scarpa
,
F.
,
Allegri
,
G.
,
Titurus
,
B.
,
Patsias
,
S.
, and
Rajasekaran
,
R.
,
2017
, “
Efficient Computational Techniques for Mistuning Analysis of Bladed Discs: A Review
,”
Mech. Syst. Signal Process.
,
87
, pp.
71
90
.10.1016/j.ymssp.2016.09.041
2.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
125
(
2
), pp.
364
371
.10.1115/1.1539868
3.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
4.
Pesaresi
,
L.
,
Salles
,
L.
,
Jones
,
A.
,
Green
,
J. S.
, and
Schwingshackl
,
C. W.
,
2017
, “
Modelling the Nonlinear Behaviour of an Underplatform Damper Test Rig for Turbine Applications
,”
Mech. Syst. Signal Process.
,
85
, pp.
662
679
.10.1016/j.ymssp.2016.09.007
5.
Pesaresi
,
L.
,
Armand
,
J.
,
Schwingshackl
,
C.
,
Salles
,
L.
, and
Wong
,
C.
,
2018
, “
An Advanced Underplatform Damper Modelling Approach Based on a Microslip Contact Model
,”
J. Sound Vib.
,
436
, pp.
327
340
.10.1016/j.jsv.2018.08.014
6.
Yang
,
B. D.
, and
Menq
,
C. H.
,
1998
, “
Characterization of 3d Contact Kinematics and Prediction of Resonant Response of Structures Having 3D Frictional Constraint
,”
J. Sound Vib.
,
217
(
5
), pp.
909
925
.10.1006/jsvi.1998.1802
7.
Niemotka
,
M. A.
, and
Ziegert
,
J. C.
,
1995
, “
Optimal Design of Split Ring Dampers for Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
117
(
3
), pp.
569
575
.10.1115/1.2814133
8.
Zucca
,
S.
,
Firrone
,
C. M.
, and
Facchini
,
M.
,
2010
, “
A Method for the Design of Ring Dampers for Gears in Aeronautical Applications
,”
ASME
Paper No. IMECE2010-38788. 10.1115/IMECE2010-38788
9.
Wang
,
Y.
,
Ye
,
H.
,
Jiang
,
X.
, and
Tian
,
A.
,
2018
, “
A Prediction Method for the Damping Effect of Ring Dampers Applied to Thin-Walled Gears Based on Energy Method
,”
Symmetry
,
10
(
12
), p.
677
.10.3390/sym10120677
10.
Laxalde
,
D.
,
Thouverez
,
F.
,
Sinou
,
J.-J.
, and
Lombard
,
J.-P.
,
2007
, “
Qualitative Analysis of Forced Response of Blisks With Friction Ring Dampers
,”
Eur. J. Mech. A/Solids
,
26
(
4
), pp.
676
687
.10.1016/j.euromechsol.2006.10.002
11.
Sun
,
Y.
,
Yuan
,
J.
,
Pesaresi
,
L.
, and
Salles
,
L.
,
2018
, “
Nonlinear Vibrational Analysis for Integrally Bladed Disk Using Frictional Ring Damper
,”
J. Phys. Conf. Ser.
,
1106
, p.
012026
.10.1088/1742-6596/1106/1/012026
12.
Laxalde
,
D.
,
Thouverez
,
F.
, and
Lombard
,
J.-P.
,
2010
, “
Forced Response Analysis of Integrally Bladed Disks With Friction Ring Dampers
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
011013
.10.1115/1.4000763
13.
Baek
,
S.
, and
Epureanu
,
B.
,
2017
, “
Reduced-Order Modeling of Bladed Disks With Friction Ring Dampers
,”
ASME J. Vib. Acoust.
,
139
(
6
), p.
061011
.10.1115/1.4036952
14.
Lupini
,
A.
,
Mitra
,
M.
, and
Epureanu
,
B. I.
,
2019
, “
Application of Tuned Vibration Absorber Concept to Blisk Ring Dampers: A Nonlinear Study
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101016
.10.1115/1.4044684
15.
Wu
,
Y.
,
Li
,
L.
,
Fan
,
Y.
,
Zucca
,
S.
,
Gastaldi
,
C.
, and
Ma
,
H.
,
2020
, “
Design of Dry Friction and Piezoelectric Hybrid Ring Dampers for Integrally Bladed Disks Based on Complex Nonlinear Modes
,”
Comput. Struct.
,
233
, p.
106237
.10.1016/j.compstruc.2020.106237
16.
Laxalde
,
D.
,
Gibert
,
C.
, and
Thouverez
,
F.
,
2008
, “
Experimental and Numerical Investigations of Friction Rings Damping of Blisks
,”
ASME
Paper No. GT2008-50862. 10.1115/GT2008-50862
17.
Tang
,
W.
, and
Epureanu
,
B. I.
,
2019
, “
Geometric Optimization of Dry Friction Ring Dampers
,”
Int. J. Non-Linear Mech.
,
109
, pp.
40
49
.10.1016/j.ijnonlinmec.2018.11.001
18.
Rosenberg
,
R. M.
,
1960
, “
Normal Modes of Nonlinear Dual-Mode Systems
,”
ASME J. Appl. Mech.
,
27
(
2
), pp.
263
268
.10.1115/1.3643948
19.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1991
, “
Non-Linear Normal Modes and Invariant Manifolds
,”
J. Sound Vib.
,
150
(
1
), pp.
170
173
.10.1016/0022-460X(91)90412-D
20.
Sarrouy
,
E.
,
2019
, “
Phase Driven Modal Synthesis for Forced Response Evaluation
,”
Seventh International Conference on Nonlinear Vibrations, Localization and Energy Transfer
, Marseille, France, July 1–4.https://hal.archives-ouvertes.fr/hal-02400397/document
21.
Laxalde
,
D.
,
Salles
,
L.
,
Blanc
,
L.
, and
Thouverez
,
F.
,
2008
, “
Non-Linear Modal Analysis for Bladed Disks With Friction Contact Interfaces
,”
ASME
Paper No. GT2008-50860. 10.1115/GT2008-50860
22.
Krack
,
M.
,
2015
, “
Nonlinear Modal Analysis of Nonconservative Systems: Extension of the Periodic Motion Concept
,”
Comput. Struct.
,
154
, pp.
59
71
.10.1016/j.compstruc.2015.03.008
23.
Krylov
,
N.
, and
Bogoliubov
,
N.
,
1943
,
Introduction to Non-Linear Mechanics
(Annals of Mathematics Studies, No. 11),
Princeton University Press
,
Princeton, NJ
.
24.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
25.
Petrov
,
E. P.
,
2004
, “
A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
126
(
1
), pp.
175
183
.10.1115/1.1644558
26.
Sarrouy
,
E.
, and
Sinou
,
J.-J.
, In
F.
Ebrahimi
, eds.,
2011
, “
Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems - On the Use of the Harmonic Balance Methods
,”
Advances in Vibration Analysis Research
,
InTech
,
Rijeka, Croatia
.10.5772/15638
27.
Yuan
,
J.
,
El-Haddad
,
F.
,
Salles
,
L.
, and
Wong
,
C.
,
2019
, “
Numerical Assessment of Reduced Order Modeling Techniques for Dynamic Analysis of Jointed Structures With Contact Nonlinearities
,”
ASME
Paper No. GT2018-75303. 10.1115/GT2018-75303
28.
Craig
, J. R.
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
29.
Firrone
,
C.
, and
Zucca
,
S.
,
2011
, “
Modelling Friction Contacts in Structural Dynamics and Its Application to Turbine Bladed Disks
,”
Numer. Anal. Theory Appl.
,
14
, pp.
301
334
.10.5772/25128
30.
Sun
,
Y.
,
Yuan
,
J.
,
Pesaresi
,
L.
,
Denimal
,
E.
, and
Salles
,
L.
,
2020
, “
Parametric Study and Uncertainty Quantification of the Nonlinear Modal Properties of Frictional Dampers
,”
ASME J. Vib. Acoust.
,
142
(
5
), p.
051102
.10.1115/1.4046953
You do not currently have access to this content.