Abstract

The complex interaction between the turbulent flow, combustion and the acoustic field in gas turbine engines often results in thermoacoustic instability that produces ruinously high-amplitude pressure oscillations. These self-sustained periodic oscillations may result in a sudden failure of engine components and associated electronics, and increased thermal and vibrational loads. Estimating the amplitude of the limit cycle oscillations that are expected during thermoacoustic instability helps in devising strategies to mitigate and to limit the possible damages due to thermoacoustic instability. We propose two methodologies to estimate the amplitude using only the pressure measurements acquired during stable operation. First, we use the universal scaling relation of the amplitude of the dominant mode of oscillations with the Hurst exponent to predict the amplitude of the limit cycle oscillations. We also present a methodology to estimate the amplitudes of different modes of oscillations separately using “spectral measures,” which quantify the sharpening of peaks in the amplitude spectrum. The scaling relation enables us to predict the peak amplitude at thermoacoustic instability, given the data during the safe operating condition. The accuracy of prediction is tested for both methods, using the data acquired from a laboratory-scale turbulent combustor. The estimates are in good agreement with the actual amplitudes.

References

1.
Juniper
,
M. P.
, and
Sujith
,
R. I.
,
2018
, “
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
661
689
.10.1146/annurev-fluid-122316-045125
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
, “
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,” American Institute of Aeronautics and Astronautics, Inc., Reston, VA.
3.
Schadow
,
K.
, and
Gutmark
,
E.
,
1992
, “
Combustion Instability Related to Vortex Shedding in Dump Combustors and Their Passive Control
,”
Prog. Energy Combust. Sci.
,
18
(
2
), pp.
117
132
.10.1016/0360-1285(92)90020-2
4.
Lieuwen
,
T.
,
2005
, “
Online Combustor Stability Margin Assessment Using Dynamic Pressure Data
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
478
482
.10.1115/1.1850493
5.
Johnson
,
C. E.
,
Neumeier
,
Y.
,
Lieuwen
,
T. C.
, and
Zinn
,
B. T.
,
2000
, “
Experimental Determination of the Stability Margin of a Combustor Using Exhaust Flow and Fuel Injection Rate Modulations
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
757
763
.10.1016/S0082-0784(00)80278-7
6.
Nair
,
V.
,
Thampi
,
G.
,
Karuppusamy
,
S.
,
Gopalan
,
S.
, and
Sujith
,
R. I.
,
2013
, “
Loss of Chaos in Combustion Noise as a Precursor of Impending Combustion Instability
,”
Int. J. Spray Combust. Dyn.
,
5
(
4
), pp.
273
290
.10.1260/1756-8277.5.4.273
7.
Tony
,
J.
,
Gopalakrishnan
,
E. A.
,
Sreelekha
,
E.
, and
Sujith
,
R. I.
,
2015
, “
Detecting Deterministic Nature of Pressure Measurements From a Turbulent Combustor
,”
Phys. Rev. E
,
92
(
6
), p.
062902
.10.1103/PhysRevE.92.062902
8.
Nair
,
V.
, and
Sujith
,
R. I.
,
2014
, “
Multifractality in Combustion Noise: Predicting an Impending Combustion Instability
,”
J. Fluid Mech.
,
747
, pp.
635
655
.10.1017/jfm.2014.171
9.
Nair
,
V.
,
Thampi
,
G.
, and
Sujith
,
R. I.
,
2014
, “
Engineering Precursors to Forewarn the Onset of an Impending Combustion Instability
,”
ASME
Paper No. GT2014-26020.10.1115/GT2014-26020
10.
Gotoda
,
H.
,
Shinoda
,
Y.
,
Kobayashi
,
M.
,
Okuno
,
Y.
, and
Tachibana
,
S.
,
2014
, “
Detection and Control of Combustion Instability Based on the Concept of Dynamical System Theory
,”
Phys. Rev. E
,
89
(
2
) p.
022910
.10.1103/PhysRevE.89.022910
11.
Godavarthi
,
V.
,
Pawar
,
S. A.
,
Unni
,
V. R.
,
Sujith
,
R. I.
,
Marwan
,
N.
, and
Kurths
,
J.
,
2018
, “
Coupled Interaction Between Unsteady Flame Dynamics and Acoustic Field in a Turbulent Combustor
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
28
(
11
), p.
113111
.10.1063/1.5052210
12.
Murugesan
,
M.
, and
Sujith
,
R. I.
,
2016
, “
Detecting the Onset of an Impending Thermoacoustic Instability Using Complex Networks
,”
J. Propul. Power
,
32
(
3
), pp.
707
712
.10.2514/1.B35914
13.
Gotoda
,
H.
,
Amano
,
M.
,
Miyano
,
T.
,
Ikawa
,
T.
,
Maki
,
K.
, and
Tachibana
,
S.
,
2012
, “
Characterization of Complexities in Combustion Instability in a Lean Premixed Gas-Turbine Model Combustor
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
22
(
4
), p.
043128
.10.1063/1.4766589
14.
Kobayashi
,
T.
,
Murayama
,
S.
,
Hachijo
,
T.
, and
Gotoda
,
H.
,
2019
, “
Early Detection of Thermoacoustic Combustion Instability Using a Methodology Combining Complex Networks and Machine Learning
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064034
.10.1103/PhysRevApplied.11.064034
15.
Hachijo
,
T.
,
Masuda
,
S.
,
Kurosaka
,
T.
, and
Gotoda
,
H.
,
2019
, “
Early Detection of Thermoacoustic Combustion Oscillations Using a Methodology Combining Statistical Complexity and Machine Learning
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
29
(
10
), p.
103123
.10.1063/1.5120815
16.
Bhattacharya
,
C.
,
O'Connor
,
J.
, and
Ray
,
A.
,
2020
, “
Data-Driven Detection and Early Prediction of Thermoacoustic Instability in a Multi-Nozzle Combustor
,”
Combust. Sci. Technol.
, pp.
1
32
.10.1080/00102202.2020.1820495
17.
Ćosić
,
B.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2013
, “
Prediction of Pressure Amplitudes of Self-Excited Thermoacoustic Instabilities for a Partially Premixed Swirl-Flame
,”
ASME
Paper No. GT2013-94160.10.1115/GT2013-94160
18.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2004
, “
Low-Order Modelling of Thermoacoustic Limit Cycles
,”
ASME
Paper No. GT2004-54245.10.1115/GT2004-54245
19.
Krediet
,
H.
,
Krebs
,
W.
,
Portillo
,
J. E.
, and
Kok
,
J.
,
2010
, “
Prediction of Thermoacoustic Limit Cycles During Premixed Combustion Using the Modified Galerkin Approach
,”
46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
, Jul. 25–28, 2010, Nashville, TN, AIAA Paper No. 2010-7150.10.2514/6.2010-7150
20.
Seshadri
,
A.
,
Pavithran
,
I.
,
Unni
,
V. R.
, and
Sujith
,
R. I.
,
2018
, “
Predicting the Amplitude of Limit-Cycle Oscillations in Thermoacoustic Systems With Vortex Shedding
,”
AIAA J.
,
56
(
9
), pp.
3507
3514
.10.2514/1.J056926
21.
Nair
,
V.
,
Thampi
,
G.
, and
Sujith
,
R.
,
2014
, “
Intermittency Route to Thermoacoustic Instability in Turbulent Combustors
,”
J. Fluid Mech.
,
756
, pp.
470
487
.10.1017/jfm.2014.468
22.
Pavithran
,
I.
,
Unni
,
V. R.
,
Varghese
,
A. J.
,
Sujith
,
R. I.
,
Saha
,
A.
,
Marwan
,
N.
, and
Kurths
,
J.
,
2020
, “
Universality in the Emergence of Oscillatory Instabilities in Turbulent Flows
,”
Europhys. Lett.
,
129
(
2
), p.
24004
.10.1209/0295-5075/129/24004
23.
Pavithran
,
I.
,
Unni
,
V. R.
,
Varghese
,
A. J.
,
Premraj
,
D.
,
Sujith
,
R. I.
,
Vijayan
,
C.
,
Saha
,
A.
,
Marwan
,
N.
, and
Kurths
,
J.
,
2020
, “
Universality in Spectral Condensation
,”
Sci Rep
,
10
(
1
), p.
17405
.10.1038/s41598-020-73956-7
24.
Pavithran
,
I.
,
Unni
,
V. R.
, and
Sujith
,
R. I.
,
2018
, “
Patent of Addition to the Patent, System and Method for Predetermining the Onset of Impending Oscillatory Instabilities in Practical Devices
,” US Patent No. 9804054B2.
25.
Pavithran
,
I.
,
Unni
,
V. R.
,
Varghese
,
A. J.
,
Kasthuri
,
P.
, and
Sujith
,
R. I.
,
2018
, “
System and Method for Determining Oscillatory Instabilities in Fluid Mechanical devices - WO2020021565A1
,” India Provisional Patent Reference No. 201841027977.
26.
Ihlen
,
E. A. F. E.
,
2012
, “
Introduction to Multifractal Detrended Fluctuation Analysis in Matlab
,”
Front. Physiol.
,
3
, p.
141
.10.3389/fphys.2012.00141
27.
Kerres
,
B.
,
Nair
,
V.
,
Cronhjort
,
A.
, and
Mihaescu
,
M.
,
2016
, “
Analysis of the Turbocharger Compressor Surge Margin Using a Hurst-Exponent-Based Criterion
,”
SAE Int. J. Engines
,
9
(
3
), pp.
1795
1806
.10.4271/2016-01-1027
28.
Lieuwen
,
T. C.
,
2002
, “
Experimental Investigation of Limit-Cycle Oscillations in an Unstable Gas Turbine Combustor
,”
J. Propul. Power
,
18
(
1
), pp.
61
67
.10.2514/2.5898
29.
Lieuwen
,
T. C.
,
2003
, “
Statistical Characteristics of Pressure Oscillations in a Premixed Combustor
,”
J. Sound Vib.
,
260
(
1
), pp.
3
17
.10.1016/S0022-460X(02)00895-7
30.
Hupert
,
J. J.
,
1965
, “
Modulation, Noise and Spectral Analysis: Applied to Information Transmission
,”
Proc. IEEE
,
53
(
12
), p.
2171
.10.1109/PROC.1965.4562
31.
Pawar
,
S. A.
,
Raghunathan
,
M.
,
Reeja
,
K. V.
,
Midhun
,
P. R.
, and
Sujith
,
R. I.
,
2020
, “
Effect of Preheating of the Reactants on the Transition to Thermoacoustic Instability in a Bluff-Body Stabilized Dump Combustor
,”
Proceedings of the Combustion Institute
,
38
(
4
), pp.
6193
6201
.10.1016/j.proci.2020.06.370
You do not currently have access to this content.