Abstract

In the preliminary phase of analyzing the thermoacoustic characteristics of a gas turbine combustor, implementing robust design principles is essential to minimize detrimental variations of its thermoacoustic performance under various sources of uncertainties. In this study, we systematically explore different aspects of robust design in thermoacoustic instability analysis, including risk analysis, control design, and inverse tolerance design. We simultaneously take into account multiple thermoacoustic modes and uncertainty sources from both the flame and acoustic boundary parameters. In addition, we introduce the concept of a “risk diagram” based on specific statistical descriptions of the underlying uncertain parameters, which allows practitioners to conveniently visualize the distribution of the modal instability risk over the entire parameter space. Throughout this study, a machine learning method called “Gaussian process” (GP) modeling approach is employed to efficiently tackle the challenge posed by the large parameter variational ranges, various statistical descriptions of the parameters, as well as the multifaceted nature of robust design analysis. For each of the investigated robust design tasks, we propose an efficient solution strategy and benchmark the accuracy of the results delivered by GP models. We demonstrate that GP models can be flexibly adjusted to various tasks while only requiring one-time training. Their adaptability and efficiency make this modeling approach very appealing for industrial practices.

References

1.
Lieuwen
,
T.
, and
Yang
,
V.
, eds.,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
(Progress in Astronautics and Aeronautics, Vol.
210
),
AIAA
, Reston, VA.
2.
Juniper
,
M. P.
, and
Sujith
,
R. I.
,
2018
, “
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
661
689
.10.1146/annurev-fluid-122316-045125
3.
Park
,
G. J.
,
Lee
,
T. H.
,
Lee
,
K. H.
, and
Hwang
,
K. H.
,
2006
, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.10.2514/1.13639
4.
Ling
,
Y.
,
Ryan
,
K.
,
Asher
,
I.
,
Kristensen
,
J.
,
Ghosh
,
S.
, and
Wang
,
L.
,
2018
, “
Efficient Robust Design Optimization Using Gaussian Process and Intelligent Sampling
,”
AIAA
Paper No. 2018-4175.10.2514/6.2018-4175
5.
Bade
,
S.
,
Wagner
,
M.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Schuermans
,
B.
,
2013
, “
Design for Thermo-Acoustic Stability: Modeling of Burner and Flame Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111502
.10.1115/1.4025001
6.
Bade
,
S.
,
Wagner
,
M.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Schuermans
,
B.
,
2013
, “
Design for Thermo-Acoustic Stability: Procedure and Database
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
121507
.10.1115/1.4025131
7.
Aguilar
,
J. G.
, and
Juniper
,
M. P.
,
2018
, “
Adjoint Methods for Elimination of Thermoacoustic Oscillations in a Model Annular Combustor Via Small Geometry Modifications
,”
ASME
Paper No. GT2018-75692.10.1115/GT2018-75692
8.
Guo
,
S.
,
Silva
,
C. F.
,
Ghani
,
A.
, and
Polifke
,
W.
,
2019
, “
Quantification and Propagation of Uncertainties in Identification of Flame Impulse Response for Thermoacoustic Stability Analysis
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021032
.10.1115/1.4041652
9.
Ndiaye
,
A.
,
Bauerheim
,
M.
, and
Nicoud
,
F.
,
2015
, “
Uncertainty Quantification of Thermoacoustic Instabilities on a Swirled Stabilized Combustor
,”
ASME
Paper No. GT2015-44133.10.1115/GT2015-44133
10.
Magri
,
L.
,
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part II: Uncertainty Quantification
,”
J. Comput. Phys.
,
325
, pp.
411
421
.10.1016/j.jcp.2016.08.043
11.
Mensah
,
G. A.
,
Magri
,
L.
, and
Moeck
,
J. P.
,
2017
, “
Methods for the Calculation of Thermoacoustic Stability Margins and Monte Carlo-Free Uncertainty Quantification
,”
ASME
Paper No. GT2017-64829.10.1115/GT2017-64829
12.
Silva
,
C.
,
Magri
,
L.
,
Runte
,
T.
, and
Polifke
,
W.
,
2016
, “
Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
011901
.10.1115/1.4034203
13.
Bauerheim
,
M.
,
Ndiaye
,
A.
,
Constantine
,
P.
,
Moreau
,
S.
, and
Nicoud
,
F.
,
2016
, “
Symmetry Breaking of Azimuthal Thermoacoustic Modes: The UQ Perspective
,”
J. Fluid Mech.
,
789
, pp.
534
566
.10.1017/jfm.2015.730
14.
Avdonin
,
A.
,
Jaensch
,
S.
,
Silva
,
C. F.
,
Češnovar
,
M.
, and
Polifke
,
W.
,
2018
, “
Uncertainty Quantification and Sensitivity Analysis of Thermoacoustic Stability With Non-Intrusive Polynomial Chaos Expansion
,”
Combust. Flame
,
189
, pp.
300
310
.10.1016/j.combustflame.2017.11.001
15.
Avdonin
,
A.
, and
Polifke
,
W.
,
2018
, “
Quantification of the Impact of Uncertainties in Operating Conditions on the Flame Transfer Function With Non-Intrusive Polynomial Chaos Expansion
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011020
.10.1115/1.4040745
16.
Clarich
,
A.
, and
Russo
,
R.
,
2018
, “
Formulations for Robust Design and Inverse Robust Design
,”
Uncertainty Management for Robust Industrial Design in Aeronautics
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol.
140
),
Springer
, pp.
447
462
.
17.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Kevin Tucker
,
P.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.10.1016/j.paerosci.2005.02.001
18.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.10.1115/1.4000127
19.
Tay-Wo-Chong
,
L.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Identification of Premixed Flame Transfer Function
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021502
.10.1115/1.4004183
20.
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2016
, “
Modeling Flame Describing Functions Based on Hydrodynamic Linear Stability Analysis
,”
ASME
Paper No. GT2016-57316.10.1115/GT2016-57316
21.
Albayrak
,
A.
, and
Polifke
,
W.
,
2016
, “
Propagation Velocity of Inertial Waves in Cylindrical Swirling Flow
,”
23nd International Congress on Sound and Vibration (ICSV23)
, Athens, Greece, July 10--14, pp. 1–8.
22.
Tay-Wo-Chong
,
L.
,
Komarek
,
T.
,
Kaess
,
R.
,
Föller
,
S.
, and
Polifke
,
W.
,
2010
, “
Identification of Flame Transfer Functions From LES of a Premixed Swirl Burner
,”
ASME
Paper No. GT2010-22769.10.1115/GT2010-22769
23.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilites in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
24.
Hoeijmakers
,
M.
,
Kornilov
,
V.
,
Lopez Arteaga
,
I.
,
de Goey
,
P.
, and
Nijmeijer
,
H.
,
2014
, “
Intrinsic Instability of Flame-Acoustic Coupling
,”
Combust. Flame
,
161
(
11
), pp.
2860
2867
.10.1016/j.combustflame.2014.05.009
25.
Emmert
,
T.
,
Bomberg
,
S.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2017
, “
Acoustic and Intrinsic Thermoacoustic Modes of a Premixed Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3835
3842
.10.1016/j.proci.2016.08.002
26.
Albayrak
,
A.
,
Steinbacher
,
T.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2017
, “
Convective Scaling of Intrinsic Thermo-Acoustic Eigenfrequencies of a Premixed Swirl Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041510
.10.1115/1.4038083
27.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J. F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
28.
Schneider
,
E.
,
Staudacher
,
S.
,
Schuermans
,
B.
,
Ye
,
H.
, and
Meeuwissen
,
T.
,
2007
, “
Real-Time Modelling of the Thermoacoustic Dynamics of a Gas Turbine Using a Gaussian Process
,”
ASME
Paper No. GT2007-27468.10.1115/GT2007-27468
29.
Chattopadhyay
,
P.
,
Mondal
,
S.
,
Bhattacharya
,
C.
,
Mukhopadhyay
,
A.
, and
Ray
,
A.
,
2017
, “
Dynamic Data-Driven Design of Lean Premixed Combustors for Thermoacoustically Stable Operations
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111419
.10.1115/1.4037307
30.
Chattopadhyay
,
P.
,
Mondal
,
S.
,
Ray
,
A.
, and
Mukhopadhyay
,
A.
,
2018
, “
Dynamic Data-Driven Combustor Design for Mitigation of Thermoacoustic Instabilities
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
1
), p.
014501
.10.1115/1.4040210
31.
Lataniotis
,
C.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2017
, “
UQLab User Manual—Kriging (Gaussian Process Modelling)
,” Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Zurich, Switzerland, Report No. 3.
32.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning Series),
The MIT Press
, Cambridge, MA.
33.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
34.
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.10.1016/j.paerosci.2008.11.001
35.
Kwon
,
H.
,
Choi
,
S.
,
Kwon
,
J.-H.
, and
Lee
,
D.
,
2016
, “
Surrogate-Based Robust Optimization and Design to Unsteady Low-Noise Open Rotors
,”
J. Aircr.
,
53
(
5
), pp.
1448
1467
.10.2514/1.C033109
36.
Ryan
,
K. M.
,
Kristensen
,
J.
,
Ling
,
L.
,
Ghosh
,
S.
,
Asher
,
I.
, and
Wang
,
L.
,
2018
, “
A Gaussian Process Modeling Approach for Fast Robust Design With Uncertain Inputs
,”
ASME
Paper No. GT2018-77007.10.1115/GT2018-77007
37.
Liu
,
H.
,
Cai
,
J.
, and
Ong
,
Y.-S.
,
2017
, “
An Adaptive Sampling Approach for Kriging Metamodeling by Maximizing Expected Prediction Error
,”
Comput. Chem. Eng.
,
106
(
2
), pp.
171
182
.10.1016/j.compchemeng.2017.05.025
38.
Swiler
,
L.
,
Slepoy
,
R.
, and
Giunta
,
A.
,
2006
, “
Evaluation of Sampling Methods in Constructing Response Surface Approximations
,”
AIAA
Paper No. 2006-1827.10.2514/6.2006-1827
39.
Loeppky
,
J. L.
,
Sacks
,
J.
, and
Welch
,
W. J.
,
2009
, “
Choosing the Sample Size of a Computer Experiment: A Practical Guide
,”
Technometrics
,
51
(
4
), pp.
366
376
.10.1198/TECH.2009.08040
40.
Silva
,
C. F.
,
Pettersson
,
P.
,
Iaccarino
,
G.
, and
Ihme
,
M.
,
2018
, “
Generalized Chaos Expansion of State Space Models for Uncertainty Quanti Cation in Thermoacoustics
,” Summer Program, Center for Turbulence Research, Stanford University, Stanford CA, June 24–July 20, pp. 339–348.
41.
Ahmed
,
M. Y. M.
, and
Qin
,
N.
,
2009
, “
Comparison of Response Surface and Kriging Surrogates in Aerodynamic Design Optimization of Hypersonic Spiked Blunt Bodies
,”
13th International Conference on Aerospace Sciences and Aviation Technology
, Military Technical College, Cairo, Egypt, May 28–30, Paper No. ASAT-13-AE-15.
42.
Audet
,
C.
, and
Dennis
,
J.
,
2002
, “
Analysis of Generalized Pattern Searches
,”
SIAM J. Optim.
,
13
(
3
), pp.
889
903
.10.1137/S1052623400378742
43.
Goel
,
T.
,
Vaidyanathan
,
R.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Queipo
,
N. V.
, and
Tucker
,
K.
,
2007
, “
Response Surface Approximation of Pareto Optimal Front in Multi-Objective Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
4–6
), pp.
879
893
.10.1016/j.cma.2006.07.010
44.
Custódio
,
A.
,
Madeira
,
J.
,
Vaz
,
A.
, and
Vicente
,
L.
,
2011
, “
Direct Multisearch for Multiobjective Optimization
,”
SIAM J. Optim.
,
21
(
3
), pp.
1109
1140
.10.1137/10079731X
45.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
Wiley
, Hoboken, NJ.
46.
Silva
,
C. F.
,
Merk
,
M.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2017
, “
The Contribution of Intrinsic Thermoacoustic Feedback to Combustion Noise and Resonances of a Confined Turbulent Premixed Flame
,”
Combust. Flame
,
182
, pp.
269
278
.10.1016/j.combustflame.2017.04.015
You do not currently have access to this content.