Abstract

A numerical investigation of pollutant emissions of a novel dry low-emissions burner for heavy-duty gas turbine applications is presented. The objective of this work is to develop and assess a robust and cost-efficient numerical setup for the prediction of NOx and CO emissions in industrial gas turbines and to investigate the pollutant formation mechanisms, thus supporting the design process of a novel low-emission burner. To this end, a comparison against experimental data, from a recent experimental campaign performed by BHGE in cooperation with University of Florence, has been exploited. In the first part of this work, a Reynolds-averaged Navier–Stokes (RANS) approach on both a simplified geometry and the complete domain is adopted to characterize the global flame behavior and validate the numerical setup. Then, unsteady simulations exploiting the scale adaptive simulation (SAS) approach have been performed to assess the prediction improvements that can be obtained with the unsteady modeling of the flame. For all simulations, the flamelet generated manifold (FGM) model has been used, allowing the reliable and cost-efficient application of detailed chemistry mechanisms in computational fluid dynamics (CFD) simulation. However, FGM typically faces issues predicting flame emissions, such as NOx and CO, due to the wide range of time scales involved, from turbulent mixing to pollutant species oxidation. Specific models are typically used to predict NOx emissions, starting from the converged flow-field and introducing additional transport equations. Also CO prediction, especially at part-load operating conditions could be an issue for flamelet-based model: in fact, as the load decreases and the extinction limit approaches, a superequilibrium CO concentration, which cannot be accurately predicted by FGM, appears in the exhaust gases. To overcome this issue, a specific CO-burn-out model, following the original idea proposed by Klarmann, has been implemented in ANSYS fluent. The model allows to decouple the effective CO oxidation term from the one computed by FGM, defining a postflame zone where the source term of CO is treated following the Arrhenius formulation. In order to support the design process, an indepth CFD investigation has been carried out, evaluating the impact of an alternative burner geometrical configuration on stability and emissions and providing detailed information about the main regions and mechanisms of pollutants production. The outcomes support the analysis of experimental results, allowing an indepth investigation of the complex flow-field and the flame-related quantities, which have not been measured during the tests.

References

1.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
2.
van Oijen
,
J. A.
,
Lammers
,
F. A.
, and
de Goey
,
L. P. H.
,
2001
, “
Modelling of Complex Premixed Burner Systems by Using Flamelet-Generated Manifolds
,”
Combust. Flame
,
127
(
3
), pp.
2124
2134
.10.1016/S0010-2180(01)00316-9
3.
van Oijen
,
J. A.
,
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
ten Thije Boonkkamp
,
J. H. M.
, and
de Goey
,
L. P. H.
,
2016
, “
State-of-the-Art in Premixed Combustion Modelling Using Flamelet Generated Manifolds
,”
Prog. Energy Combust. Sci.
,
57
, pp.
30
74
.10.1016/j.pecs.2016.07.001
4.
Nguyen
,
P. D.
,
Vervisch
,
L.
,
Subramanian
,
V.
, and
Domingo
,
P.
,
2010
, “
Multidimensional Flamelet-Generated Manifolds for Partially Premixed Combustion
,”
Combust. Flame
,
157
(
1
), pp.
43
61
.10.1016/j.combustflame.2009.07.008
5.
Pampaloni
,
D.
,
Bertini
,
D.
,
Puggelli
,
S.
,
Mazzei
,
L.
, and
Andreini
,
A.
,
2017
, “
Methane Swirl-Stabilized Lean Burn Flames: Assessment of Scale-Resolving Simulations
,”
Energy Procedia
,
126
, pp.
834
841
.10.1016/j.egypro.2017.08.274
6.
Innocenti
,
A.
,
Andreini
,
A.
,
Giusti
,
A.
,
Facchini
,
B.
,
Cerutti
,
M.
,
Ceccherini
,
G.
, and
Riccio
,
G.
,
2014
, “
Numerical Investigations of NOx Emissions of a Partially Premixed Burner for Natural Gas Operations in Industrial Gas Turbine
,”
ASME
Paper No. GT2014-26906. 10.1115/GT2014-26906
7.
Innocenti
,
A.
,
Andreini
,
A.
,
Facchini
,
B.
,
Cerutti
,
M.
,
Ceccherini
,
G.
, and
Riccio
,
G.
,
2016
, “
Design Improvement Survey for NOx Emissions Reduction of a Heavy-Duty Gas Turbine Partially Premixed Fuel Nozzle Operating With Natural Gas: Numerical Assessment
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
011501
.10.1115/1.4031144
8.
Goldin
,
G.
,
Ren
,
Z.
,
Forkel
,
H.
,
Lu
,
L.
,
Tangirala
,
V.
, and
Karim
,
H.
,
2012
, “
Modelling Co With Flamelet-Generated Manifolds. Part 1: Flamelet Configuration
,”
ASME
Paper No. GT2012-69528. 10.1115/GT2012-69528
9.
Wegner
,
B.
,
Gruschka
,
U.
,
Krebs
,
W.
,
Egorov
,
Y.
,
Forkel
,
H.
,
Ferreira
,
J.
, and
Aschmoneit
,
K.
,
2011
, “
CFD Prediction of Partload CO Emissions Using a Two-Timescale Combustion Model
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), pp.
71502
71507
.10.1115/1.4002021
10.
Klarmann
,
N.
,
Zoller
,
B. T.
, and
Sattelmayer
,
T.
,
2018
, “
Numerical Modelling of CO-Emissions for Gas Turbine Combustors Operating at Part-Load Conditions
,”
J. Global Power and Propulsion Forum
,
2
, pp.
376
387
.10.22261/JGPPS.C3N5OA
11.
Cerutti
,
M.
,
Riccio
,
G.
,
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
, and
Picchi
,
A.
,
2018
, “
Experimental and Numerical Investigations of Novel Natural Gas Low NOx Burners for Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021006
.10.1115/1.4040814
12.
Pampaloni
,
D.
,
Nassini
,
P. C.
,
Paccati
,
S.
,
Palanti
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
,
Cerutti
,
M.
, and
Riccio
,
G.
,
2018
, “
Numerical Predictions of Pollutant Emissions of Novel Natural Gas Low NOx Burners for Heavy Duty Gas Turbine
,”
AIAA
Paper No. 2018-4562. 10.2514/6.2018-4562
13.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New-Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
14.
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2015
, “
The Implementation of Five-Dimensional FGM Combustion Model for the Simulation of a Gas Turbine Model Combustor
,”
ASME
Paper No. GT2015-42037. 10.1115/GT2015-42037
15.
Polifke
,
W.
,
1995
, “
Fundamental and Practical Limitations of NOx Reduction in Lean-Premixed Combustion
,” Euroconference “Premixed Turbulent Combustion: Introduction to the State of the Art,” Aachen, Germany, pp.
1
17
.
16.
ANSYS
,
2011
,
Fluent 17 Theory Guide
,
ANSYS
, Canonsburg, PA, pp.
724
746
.
17.
Andreini
,
A.
,
Facchini
,
B.
,
Mangani
,
L.
,
Asti
,
A.
,
Ceccherini
,
G.
, and
Modi
,
R.
,
2005
, “
NOx Emissions Reduction in an Innovative Industrial Gas Turbine Combustor (GE10 Machine): A Numerical Study of the Benefits of a New Pilot-System on Flame Structure and Emissions
,”
ASME
Paper No. GT2005-68364. 10.1115/GT2005-68364
18.
De Soete
,
G. G.
,
1975
, “
Overall Reaction Rates of NO and N2 Formation From Fuel Nitrogen
,”
Symp. (Int.) Combust.
,
15
(
1
), pp.
1093
1102
.10.1016/S0082-0784(75)80374-2
19.
Cerutti
,
M.
,
Roma
,
M.
,
Becchi
,
R.
,
Facchini
,
B.
, and
Picchi
,
A.
,
2019
, “
Improving Emission and Blow-Out Characteristics of Novel Natural Gas Low NOx Burners for Heavy Duty Gas Turbine
,”
ASME
Paper No. GT2019-91235. 10.1115/GT2019-91235
20.
Tay-Wo-Chong
,
L.
,
Tay
,
L.
,
Komarek
,
T.
,
Zellhuber
, M.
,
Lenz
,
J.
,
Hirsch
,
C.
, and
Polifke
,
W.
,
2009
, “
Influence of Strain and Heat Loss on Flame Stabilization in a Non-Adiabatic Combustor
,”
European Combustion Meeting
, Chania, Greece.
21.
Nassini
,
P. C.
,
Pampaloni
,
D.
,
Andreini
,
A.
, and
Meloni
,
R.
,
2019
, “
Large Eddy Simulation of Lean Blow-Off in a Premixed Swirl Stabilized Flame
,”
ASME
Paper No. GT2019-90856. 10.1115/GT2019-90856
You do not currently have access to this content.