Abstract

Accurate prediction of unsteady thermal loads is of paramount importance in several engineering disciplines and applications. Performing time-accurate unsteady conjugate heat transfer (CHT) simulations presents considerable challenges due to the markedly different time scales between the solid and fluid domains. Two methods have been recently proposed, aimed at addressing this issue: multiscale modeling (MSM) and equalized time-scales (ET). The former is based on the separation of the disparate short and long temporal scales of the solution and subsequent averaging of the flow/energy equations. In the latter, the equalization of the time scales is achieved through manipulation of the solid's thermal properties. Both methods are very appealing due to the possibility of being easily implemented on an existing solver. It becomes, thus, relevant to assess their performance and/or limitations. This paper work presents a comparative study of the two methods for the prediction of transient thermal load, first using a simplified case of a solid body with uniform temperature, then through the investigation of the prewarming phase of a steam turbine. Both methods are then compared against a reference baseline fully coupled (FC) CHT solution. The results show how the MSM allows greater accuracy and robustness with considerable saving in computational cost with respect to the baseline solution.

References

1.
Topel
,
M.
,
Nilsson
,
A.
,
Jöcker
,
M.
,
Spelling
,
J.
, and
Laumert
,
B.
,
2018
, “
Investigation Into the Thermal Limitations of Steam Turbines During Start-Up Operation
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012603
.10.1115/1.4037664
2.
Topel
,
M.
,
Genrup
,
M.
,
Jöcker
,
M.
,
Spelling
,
J.
, and
Laumert
,
B.
,
2015
, “
Operational Improvements for Startup Time Reduction in Solar Steam Turbines
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042604
.10.1115/1.4028661
3.
Topel
,
M.
,
Jöcker
,
M.
,
Paul
,
S.
, and
Laumert
,
B.
,
2016
, “
Differential Expansion Sensitivity Studies During Steam Turbine Startup
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062102
.10.1115/1.4031643
4.
Moffat
,
R. J.
,
1998
, “
What's New in Convective Heat Transfer?
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
90
101
.10.1016/S0142-727X(97)10014-5
5.
Marinescu
,
G.
,
Mohr
,
W. F.
,
Ehrsam
,
A.
,
Ruffino
,
P.
, and
Sell
,
M.
,
2014
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components–Temperature Measurements With Optical Probes and Natural Cooling Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
021602
.10.1115/1.4025556
6.
Maffulli
,
R.
, and
He
,
L.
,
2014
, “
Wall Temperature Effects on Heat Transfer Coefficient for High-Pressure Turbines
,”
J. Propul. Power
,
30
(
4
), pp.
1080
1090
.10.2514/1.B35126
7.
Maffulli
,
R.
, and
He
,
L.
,
2017
, “
Impact of Wall Temperature on Heat Transfer Coefficient and Aerodynamics for Three-Dimensional Turbine Blade Passage
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041002
.10.1115/1.4036012
8.
Jiang
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Lu
,
S.
,
Wang
,
L.
, and
Teng
,
J.
,
2018
, “
Experimental Evidence of Temperature Ratio Effect on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
140
(
12
), p.
121010
.10.1115/1.4041811
9.
Sun
,
Z.
,
Chew
,
J. W.
,
Hills
,
N. J.
,
Volkov
,
K. N.
, and
Barnes
,
C. J.
,
2010
, “
Efficient Finite Element Analysis/Computational Fluid Dynamics Thermal Coupling for Engineering Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031016
.10.1115/1.3147105
10.
Wang
,
Z.
,
Corral
,
R.
,
Chaquet
,
J. M.
, and
Pastor
,
G.
,
2013
, “
Analysis and Improvement of a Loosely Coupled Fluid-Solid Heat Transfer Method
,”
ASME
Paper No. GT2013-94332.10.1115/GT2013-94332
11.
He
,
L.
, and
Fadl
,
M.
,
2017
, “
Multi-Scale Time Integration for Transient Conjugate Heat Transfer
,”
Int. J. Numer. Methods Fluids
,
83
(
12
), pp.
887
904
.10.1002/fld.4295
12.
He
,
L.
, and
Oldfield
,
M.
,
2011
, “
Unsteady Conjugate Heat Transfer Modeling
,”
ASME J. Turbomach.
,
133
(
3
), p.
031022
.10.1115/1.4001245
13.
Amon
,
C. H.
,
1995
, “
Spectral Element-Fourier Method for Unsteady Conjugate Heat Transfer in Complex Geometry Flows
,”
J. Thermophys. Heat Transfer
,
9
(
2
), pp.
247
253
.10.2514/3.653
14.
He
,
L.
,
2019
, “
Closely Coupled Fluid-Solid Interface Method With Moving-Average for Les Based Conjugate Heat Transfer Solution
,”
Int. J. Heat Fluid Flow
,
79
, p.
108440
.10.1016/j.ijheatfluidflow.2019.108440
15.
Fadl
,
M.
,
He
,
L.
,
Stein
,
P.
, and
Marinescu
,
G.
,
2018
, “
Assessment of Unsteadiness Modeling for Transient Natural Convection
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012605
.10.1115/1.4037721
16.
Fadl
,
M.
,
Stein
,
P.
, and
He
,
L.
,
2018
, “
Full Conjugate Heat Transfer Modelling for Steam Turbines in Transient Operations
,”
Int. J. Therm. Sci.
,
124
, pp.
240
250
.10.1016/j.ijthermalsci.2017.10.025
17.
Fadl
,
M.
, and
He
,
L.
,
2017
, “
On LES Based Conjugate Heat Transfer Procedure for Transient Natural Convection
,”
ASME
Paper No. GT2017-63600.
10.1115/GT2017-63600
18.
Maffulli
,
R.
,
He
,
L.
,
Stein
,
P.
, and
Marinescu
,
G.
,
2018
, “
Fast Conjugate Heat Transfer Simulation of Long Transient Flexible Operations Using Adaptive Time Stepping
,”
ASME J. Turbomach.
,
140
(
9
), p.
091005
.10.1115/1.4040997
19.
Toebben
,
D.
,
Łuczyński
,
P.
,
Diefenthal
,
M.
,
Wirsum
,
M.
,
Reitschmidt
,
S.
,
Mohr
,
W. F.
, and
Helbig
,
K.
,
2017
, “
Numerical Investigation of the Heat Transfer and Flow Phenomena in an IP Steam Turbine in Warm-Keeping Operation With Hot Air
,”
ASME
Paper No. GT2017-63555.10.1115/GT2017-63555
20.
Diefenthal
,
M.
,
Łuczyński
,
P.
,
Rakut
,
C.
,
Wirsum
,
M.
, and
Heuer
,
T.
,
2017
, “
Thermomechanical Analysis of Transient Temperatures in a Radial Turbine Wheel
,”
ASME J. Turbomach.
,
139
(
9
), p.
091001
.10.1115/1.4036104
21.
Łuczyński
,
P.
,
Erdmann
,
D.
,
Többen
,
D.
,
Wirsum
,
M.
,
Helbig
,
K.
, and
Mohr
,
W.
,
2018
, “
Fast Numerical Calculation Approaches for the Modelling of Transient Temperature Fields in a Steam Turbine in Pre-Warming Operation Using Hot Air
,”
Proceedings of GPPS Forum 18
, Zurich, Switzerland, Jan. 10–12, pp.
10
12
.
22.
Łuczyński
,
P.
,
Többen
,
D.
,
Wirsum
,
M.
,
Mohr
,
W. F.
, and
Helbig
,
K.
,
2017
, “
Modeling of Warm-Keeping Process With Hot Air in Steam Turbines
,”
J. Power Technol.
,
97
(
5
), p.
416
.http://www.papers.itc.pw.edu.pl/index.php/JPT/article/view/1270
23.
Łuczyński
,
P.
,
Toebben
,
D.
,
Wirsum
,
M.
,
Mohr
,
W. F.
, and
Helbig
,
K.
,
2019
, “
Unsteady Conjugate Heat Transfer Investigation of a Multistage Steam Turbine in Warm-Keeping Operation With Hot Air
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011005
.10.1115/1.4040823
24.
Born
,
D.
,
Stein
,
P.
,
Marinescu
,
G.
,
Koch
,
S.
, and
Schumacher
,
D.
,
2017
, “
Thermal Modeling of an Intermediate Pressure Steam Turbine by Means of Conjugate Heat Transfer–Simulation and Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031903
.10.1115/1.4034513
25.
Marinescu
,
G.
,
Sell
,
M.
,
Ehrsam
,
A.
, and
Brunner
,
P. B.
,
2013
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components—Part 3: Startup and the Impact on Lcf Life
,”
ASME
Paper No. GT2013-94356.10.1115/GT2013-94356
You do not currently have access to this content.