Abstract

With the push to curb dangerous atmospheric pollutant production, energy generation technologies that reduce green-house gas emissions, while still providing adequate electrical supply, are of high importance. With major energy infrastructure already in place, developing enhanced pollutant-reducing combustor systems for micro gas turbines (MGTs), that can utilize low calorific fuels from renewable resources, is a major goal. The current work focuses on the experimental testing of an optimized two-stage combustor designed to operate with various fuel types, including natural gas and syngas produced via biomass gasification. Atmospheric experimental tests were performed and the results indicate larger flame lift-off heights and slightly higher CO gas emissions levels, while displaying lower NOx gas emissions levels for all thermal loads and air-to-fuel equivalence ratios tested, compared to that of the previous combustor designs. Additionally, steady-state computational fluid dynamics (CFD) simulations were conducted and the results are in general good agreement with the experimental data. Overall, the results indicate high fuel flexibility of the combustor, as well as the ability to comply with the NOx emissions limits for a larger range of operating points, compared to that of the previously tested combustors.

References

1.
Bhatt
,
M. S.
,
2001
, “
Mapping of General Combined Heat and Power Systems
,”
Energy Convers. Manage.
,
42
(
1
), pp.
115
124
.10.1016/S0196-8904(00)00045-5
2.
Pilavachi
,
P.
,
2002
, “
Mini- and Micro-Gas Turbines for Combined Heat and Power
,”
Appl. Therm. Eng.
,
22
(
18
), pp.
2003
2014
.10.1016/S1359-4311(02)00132-1
3.
Gupta
,
K. K.
,
Rehman
,
A.
, and
Sarviya
,
R. M.
,
2010
, “
Bio-Fuels for the Gas Turbine: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2946
2955
.10.1016/j.rser.2010.07.025
4.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
5.
Fritsche
,
D.
,
Furi
,
M.
, and
Boulouchos
,
K.
,
2007
, “
An Experimental Investigation of Thermoacoustic Instabilities in a, Premixed Swirl-Stabilized Flame
,”
Combust. Flame
,
151
(
1–2
), pp.
29
36
.10.1016/j.combustflame.2007.05.012
6.
Zanger
,
J.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Experimental Investigation of the Combustion Characteristics of a Double-Staged Flox®-Based Combustor on an Atmospheric and a Micro Gas Turbine Test Rig
,”
ASME
Paper No. GT2015-42313. 10.1115/GT2015-42313
7.
Schütz
,
H.
,
Lückerath
,
R.
,
Kretschmer
,
T.
,
Noll
,
B.
, and
Aigner
,
M.
,
2008
, “
Analysis of the Pollutant Formation in the FLOX Combustion
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011503
.10.1115/1.2747266
8.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
,
2008
, “
FLOX Combustion at High Pressure With Different Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011505
.10.1115/1.2749280
9.
Flamme
,
M.
,
2001
, “
Low NOx Combustion Technologies for High Temperature Applications
,”
Energy Convers. Manage.
,
42
(
15–17
), pp.
1919
1935
.10.1016/S0196-8904(01)00051-6
10.
Lammel
,
O.
,
Stöhr
,
M.
,
Kutne
,
P.
,
Dem
,
C.
,
Meier
,
W.
, and
Aigner
,
M.
,
2011
, “
Experimental Analysis of Confined Jet Flames by Laser Measurement Techniques
,”
ASME
Paper No. GT2011-45111. 10.1115/GT2011-45111
11.
Wünning
,
J. A.
, and
Wünning
,
J. G.
,
1997
, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
,
23
(
1
), pp.
81
94
.10.1016/S0360-1285(97)00006-3
12.
Schwärzle
,
A.
,
Monz
,
T.
, and
Aigner
,
M.
,
2016
, “
Detailed Examination of Two-Staged Micro Gas Turbine Combustor
,”
ASME
Paper No. GT2016-57730. 10.1115/GT2016-57730
13.
Schwärzle
,
A.
,
Monz
,
T.
, and
Aigner
,
M.
,
2017
, “
Detailed Examination of a Modified Two-Staged Micro Gas Turbine Combustor
,”
ASME
Paper No. GT2017-64477. 10.1115/GT2017-64477
14.
Zornek
,
T.
,
Monz
,
T.
, and
Aigner
,
M.
,
2013
, “
A Micro Gas Turbine Combustor for the Use of Product Gases From Biomass Gasification
,”
European Combustion Meeting 2013
, Lund, Sweden.
15.
Bower
,
H. E.
,
Grimm
,
F.
,
Schwärzle
,
A.
,
Roth
,
J.
,
Zornek
,
T.
, and
Kutne
,
P.
,
2018
, “
Experimental Analysis of the Fuel Flexibility of a Jet-Stabilized Micro Gas Turbine Combustor Designed for Low Calorific Gases
,” GPPS Paper No. GPPS-2018-0012.
16.
Spliethoff
,
H.
,
2010
,
Power Generation From Solid Fuel
,
Springer
,
Berlin
.
17.
Zornek
,
T.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Performance Analysis of the Micro Gas Turbine Turbec T100 With a New FLOX-Combustion System for Low Calorific Fuels
,”
Appl. Energy
,
159
, pp.
276
284
.10.1016/j.apenergy.2015.08.075
18.
Dandy
,
D. S.
, and
Vosen
,
S. R.
,
1992
, “
Numerical and Experimental Studies of Hydroxyl Radical Chemiluminescence in Methane-Air Flames
,”
Combust. Sci. Technol.
,
82
(
1–6
), pp.
131
150
.10.1080/00102209208951816
19.
Kazakov
,
A.
, and
Frenklach
,
M.
,
1994
, “
Reduced Reaction Sets Based on GRIMech12
,” University of California at Berkeley, Berkeley, CA, accessed June 25, 2018, http://combustion.berkeley.edu/drm/
20.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Scire
,
J. J.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
,
39
(
3
), pp.
109
136
.10.1002/kin.20218
21.
Dahmen
,
N.
,
Henrich
,
E.
,
Dinjus
,
E.
, and
Weirich
,
F.
,
2012
, “
The Bioliq® Bioslurry Gasification Process for the Production of Biosynfuels, Organic Chemicals, and Energy
,”
J. Energy Sustainability Soc.
, 2, p.
3
.10.1186/2192-0567-2-3
22.
Zanger
,
J.
,
2016
, “
Experimentalle Charakterisierung Eines Atmosphärisch Betriebenen, FLOX®-Basierten Mikrogasturbinen-Brenners Für Erdgas
,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany.
23.
German Federal Ministry for the Environment,
2016
, “
Nature Conservation and Nuclear Safety
,” accessed Mar. 3, 2018, https://www.bmu.de/en/
You do not currently have access to this content.