Abstract

With increased interest in reducing emissions, the staged combustion concept for gas turbine combustors is gaining in popularity. For this work, the effect of CO2 dilution on laminar burning velocities of premixed methane/air flames was investigated at elevated temperature through both experiments and numerical simulations. Validation of the experimental setup and methodology was completed through experimental testing of methane/air mixtures at 1 bar and 298 K. Following validation, high temperature experiments were conducted in an optically accessible constant volume combustion chamber at 1 bar and 473 K. Laminar burning velocities of premixed methane/air flames with 0%, 5%, 10%, and 15% CO2 dilution were determined using the constant pressure method enabled via schlieren visualization of the spherically propagating flame front. Results show that laminar burning velocities of methane/air mixtures at 1 bar increase by 106–145% with initial temperature increases from 298 K to 473 K. Additions of 5%, 10%, and 15% CO2 dilution at 1 bar and 473 K cause a 30–35%, 51–54%, and 66–68% decrease in the laminar burning velocity, respectively. Numerical results were obtained with CHEMKIN (Kee et al., 1985, “PREMIX: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames,”) using the GRI-Mech 3.0 (Smith et al., 2019) and the San Diego (“Chemical-Kinetic Mechanisms for Combustion Applications,” San Diego Mechanism Web Page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, San Diego, CA) mechanisms. It is concluded that the GRI-Mech 3.0 (Smith et al.., 2019) better captures the general overall trend of the experimental laminar flame speeds of methane/air/CO2 mixtures at 1 bar and 473 K. Additionally, the dilution, thermal-diffusion, and chemical effects of CO2 on the laminar burning velocities of methane/air mixtures were investigated numerically by diluting the mixtures with both chemically active and inactive CO2 following the determination of the most important elementary reactions on the burning rate through sensitivity analysis. Finally, it was shown that CO2 dilution suppresses the flame instabilities during combustion, which is attributable to the increase in the burned gas Markstein length (Lb) with the addition of diluent.

References

1.
Wu
,
C.
, and
Law
,
C. K.
,
1985
, “
On the Determination of Laminar Flame Speeds From Stretched Flames
,”
Symp. (Int.) Combust.
,
20
(
1
), pp.
1941
1949
.10.1016/S0082-0784(85)80693-7
2.
Turns
,
S. R.
,
2012
,
An Introduction to Combustion: Concepts and Applications
, 3rd ed.,
McGraw-Hill
,
New York
.
3.
Egolfopoulos
,
F. N.
,
Hansen
,
N.
,
Ju
,
Y.
,
Kohse-Höinghaus
,
K.
,
Law
,
C. K.
, and
Qi
,
F.
, 2014.
2014
, “
Advances and Challenges in Laminar Flame Experiments and Implications for Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
43
, pp.
36
67
.10.1016/j.pecs.2014.04.004
4.
Winkler
,
D.
,
Geng
,
W.
,
Knapp
,
K.
,
Engelbrecht
,
G.
,
Griffin
,
T.
, and
Stuber
,
P.
,
2017
, “
Staged Combustion Concept for Increased Operational Flexibility of Gas Turbines
,” Global Power and Propulsion Society Forum, Zurich, Switzerland.
5.
Xie
,
Y.
,
Wang
,
J.
,
Zhang
,
M.
,
Gong
,
J.
,
Jin
,
W.
, and
Huang
,
Z.
,
2013
, “
Experimental and Numerical Study on Laminar Flame Characteristics of Methane Oxy-Fuel Mixtures Highly Diluted With CO2
,”
Energy Fuels
,
27
(
10
), pp.
6231
6237
.10.1021/ef401220h
6.
Halter
,
F.
,
Foucher
,
F.
,
Landry
,
L.
, and
Mounaïm-Rousselle
,
C.
,
2009
, “
Effect of Dilution by Nitrogen and/or Carbon Dioxide on Methane and Iso-Octane Air Flames
,”
Combust. Sci. Technol.
,
181
(
6
), pp.
813
827
.10.1080/00102200902864662
7.
Vagelopoulos
,
C. M.
,
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
,
1994
, “
Further Considerations on the Determination of Laminar Flame Speeds With the Counterflow Twin-Flame Technique
,”
Symp. (Int.) Combust.
,
25
(
1
), pp.
1341
1347
.10.1016/S0082-0784(06)80776-9
8.
Van Maaren
,
A.
,
Thung
,
D. S.
, and
De Goey
,
L. P. H.
,
1994
, “
Measurement of Flame Temperature and Adiabatic Burning Velocity of Methane/Air Mixtures
,”
Combust. Sci. Technol.
,
96
(
4–6
), pp.
327
344
.10.1080/00102209408935360
9.
Aung
,
K. T.
,
Tseng
,
L. K.
,
Ismail
,
M. A.
, and
Faeth
,
G. M.
,
1995
, “
Response to Comment by S.C. Taylor and D.B. Smith on “Laminar Burning Velocities and Markstein Numbers of Hydrocarbon/Air Flames
,”
Combust. Flame
,
102
(
4
), pp.
526
530
.10.1016/0010-2180(95)00035-5
10.
Hassan
,
M. I.
,
Aung
,
K. T.
, and
Faeth
,
G. M.
,
1998
, “
Measured and Predicted Properties of Laminar Premixed Methane/Air Flames at Various Pressures
,”
Combust. Flame
,
115
(
4
), pp.
539
550
.10.1016/S0010-2180(98)00025-X
11.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
,
1998
, “
Direct Experimental Determination of Laminar Flame Speeds
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
513
519
.10.1016/S0082-0784(98)80441-4
12.
Gu
,
X.
,
Haq
,
M. Z.
,
Lawes
,
M.
, and
Woolley
,
R.
,
2000
, “
Laminar Burning Velocity and Markstein Lengths of Methane–Air Mixtures
,”
Combust. Flame
,
121
(
1–2
), pp.
41
58
.10.1016/S0010-2180(99)00142-X
13.
Rozenchan
,
G.
,
Zhu
,
D. L.
,
Law
,
C. K.
, and
Tse
,
S. D.
,
2002
, “
Outward Propagation, Burning Velocities, and Chemical Effects of Methane Flames up to 60 ATM
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1461
1470
.10.1016/S1540-7489(02)80179-1
14.
Liao
,
S. Y.
,
Jiang
,
D. M.
,
Gao
,
J.
, and
Huang
,
Z. H.
,
2004
, “
Measurements of Markstein Numbers and Laminar Burning Velocities for Natural Gas−Air Mixtures
,”
Energy Fuels
,
18
(
2
), pp.
316
326
.10.1021/ef034036z
15.
Bosschaart
,
K. J.
, and
de Goey
,
L. P. H.
,
2004
, “
The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method
,”
Combust. Flame
,
136
(
3
), pp.
261
269
.10.1016/j.combustflame.2003.10.005
16.
Halter
,
F.
,
Chauveau
,
C.
,
Djebaïli-Chaumeix
,
N.
, and
Gökalp
,
I.
,
2005
, “
Characterization of the Effects of Pressure and Hydrogen Concentration on Laminar Burning Velocities of Methane–Hydrogen–Air Mixtures
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
201
208
.10.1016/j.proci.2004.08.195
17.
Chen
,
Z.
,
Qin
,
X.
,
Ju
,
Y.
,
Zhao
,
Z.
,
Chaos
,
M.
, and
Dryer
,
F. L.
,
2007
, “
High Temperature Ignition and Combustion Enhancement by Dimethyl Ether Addition to Methane–Air Mixtures
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1215
1222
.10.1016/j.proci.2006.07.177
18.
Tahtouh
,
T.
,
Halter
,
F.
, and
Mounaïm-Rousselle
,
C.
,
2009
, “
Measurement of Laminar Burning Speeds and Markstein Lengths Using a Novel Methodology
,”
Combust. Flame
,
156
(
9
), pp.
1735
1743
.10.1016/j.combustflame.2009.03.013
19.
Hu
,
E.
,
Huang
,
Z.
,
He
,
J.
,
Jin
,
C.
, and
Zheng
,
J.
,
2009
, “
Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane–Hydrogen–Air Flames
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
4876
4888
.10.1016/j.ijhydene.2009.03.058
20.
Lowry
,
W.
,
de Vries
,
J.
,
Krejci
,
M.
,
Petersen
,
E.
,
Serinyel
,
Z.
,
Metcalfe
,
W.
,
Curran
,
H.
, and
Bourque
,
G.
,
2011
, “
Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
091501
.10.1115/1.4002809
21.
Varea
,
E.
,
2013
, “
Experimental Analysis of Laminar Spherically Expanding Flames
,”
Ph.D thesis, Institute National des Sciences Appliqu´ees de Rouen, Saint-Étienne-du-Rouvray, France
. https://tel.archives-ouvertes.fr/tel-00800616/file/TheseEmilien.pdf
22.
Farrell
,
J. T.
,
Johnston
,
R. J.
, and
Androulakis
,
I.
,
2004
, “
Molecular Structure Effects on Laminar Burning Velocities at Elevated Temperature and Pressure
,”
SAE
Paper No. 2004-01-2936.10.4271/2004-01-2936
23.
De
,
A.
,
Ting
,
D. S.-K.
, and
Checkel
,
M. D.
,
2006
, “
The Effects of Temperature and Pressure on Stretched, Freely Propagating, Premixed, Laminar Methane-Air Flame
,”
SAE
Paper No. 2006-01-0494.10.4271/2006-01-0494
24.
Marshall
,
S. P.
,
Stone
,
R.
,
Hegheş
,
C.
,
Davies
,
T. J.
, and
Cracknell
,
R. F.
,
2010
, “
High Pressure Laminar Burning Velocity Measurements and Modelling of Methane and n-Butane
,”
Combust. Theory Modell.
,
14
(
4
), pp.
519
540
.10.1080/13647830.2010.500021
25.
Akram
,
M.
, and
Kumar
,
S.
,
2012
, “
Measurement of Laminar Burning Velocity of Liquified Petroleum Gas Air Mixtures at Elevated Temperatures
,”
Energy Fuels
,
26
(
6
), pp.
3267
3274
.10.1021/ef300101n
26.
Hu
,
E.
,
Li
,
X.
,
Meng
,
X.
,
Chen
,
Y.
,
Cheng
,
Y.
,
Xie
,
Y.
, and
Huang
,
Z.
,
2015
, “
Laminar Flame Speeds and Ignition Delay Times of Methane–Air Mixtures at Elevated Temperatures and Pressures
,”
Fuel
,
158
, pp.
1
10
.10.1016/j.fuel.2015.05.010
27.
Stone
,
R. A.
,
Clarke
,
A.
, and
Beckwith
,
P.
,
1998
, “
Correlations for the Laminar-Burning Velocity of Methane/Diluent/Air Mixtures Obtained in Free-Fall Experiments
,”
Combust. Flame
,
114
(
3–4
), pp.
546
555
.10.1016/S0010-2180(97)00329-5
28.
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2001
, “
Laminar Burning Velocity of Methane–Air–Diluent Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
190
196
.10.1115/1.1339984
29.
Ponnusamy
,
S.
,
Checkel
,
M. D.
, and
Fleck
,
B. A.
,
2005
, “
Maintaining Burning Velocity of Exhaust-Diluted Methane/Air Flames by Partial Fuel Reformation
,”
IFRF Combust. J.
, epub.
30.
Qiao
,
L.
,
Gan
,
Y.
,
Nishiie
,
T.
,
Dahm
,
W. J. A.
, and
Oran
,
E. S.
,
2010
, “
Extinction of Premixed Methane/Air Flames in Microgravity by Diluents: Effects of Radiation and Lewis Number
,”
Combust. Flame
,
157
(
8
), pp.
1446
1455
.10.1016/j.combustflame.2010.04.004
31.
Mazas
,
A. N.
,
Lacoste
,
D.
, and
Schuller
,
T.
, “
Experimental and Numerical Investigation on the Laminar Flame Speed of CH4/O2 Mixtures Diluted With CO2 and H2O
,”
ASME
Paper No. GT2010-22512.10.1115/GT2010-22512
32.
Galmiche
,
B.
,
Halter
,
F.
,
Foucher
,
F.
, and
Dagaut
,
P.
,
2011
, “
Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames
,”
Energy Fuels
,
25
(
3
), pp.
948
954
.10.1021/ef101482d
33.
Mazas
,
A. N.
,
Fiorina
,
B.
,
Lacoste
,
D. A.
, and
Schuller
,
T.
,
2011
, “
Effects of Water Vapor Addition on the Laminar Burning Velocity of Oxygen-Enriched Methane Flames
,”
Combust. Flame
,
158
(
12
), pp.
2428
2440
.10.1016/j.combustflame.2011.05.014
34.
Hu
,
E.
,
Jiang
,
X.
,
Huang
,
Z.
, and
Iida
,
N.
,
2012
, “
Numerical Study on the Effects of Diluents on the Laminar Burning Velocity of Methane–Air Mixtures
,”
Energy Fuels
,
26
(
7
), pp.
4242
4252
.10.1021/ef300535s
35.
Mendieta
,
M.
,
Alviso
,
D.
, and
Gonçalves dos Santos
,
R.
,
2016
, “
Numerical Study of Laminar Premixed Methane/Air Flames With Carbon Dioxide Dilution
,”
16th Brazilian Congress of Thermal Sciences and Engineering
, Vitoria, Brazil, Nov. 7–10, pp.
1
6
.10.26678/ABCM.ENCIT2016.CIT2016-0688
36.
Zahedi
,
P.
, and
Yousefi
,
K.
,
2014
, “
Effects of Pressure and Carbon Dioxide, Hydrogen and Nitrogen Concentration on Laminar Burning Velocities and NO Formation of Methane-Air Mixtures
,”
J. Mech. Sci. Technol.
,
28
(
1
), pp.
377
386
.10.1007/s12206-013-0970-5
37.
Chan
,
Y.
,
Zhu
,
M.
,
Zhang
,
Z. Z.
,
Liu
,
P.
, and
Zhang
,
D.
,
2015
, “
The Effect of CO2 Dilution on the Laminar Burning Velocity of Premixed Methane/Air Flames
,”
Energy Procedia
,
75
, pp.
3048
3053
.10.1016/j.egypro.2015.07.621
38.
Khan
,
A. R.
,
Anbusaravanan
,
S.
,
Kalathi
,
L.
,
Velamati
,
R.
, and
Prathap
,
C.
,
2017
, “
Investigation of Dilution Effect With N2/CO2 on Laminar Burning Velocity of Premixed Methane/Oxygen Mixtures Using Freely Expanding Spherical Flames
,”
Fuel
,
196
, pp.
225
232
.10.1016/j.fuel.2017.01.086
39.
Aravind
,
B.
,
Varghese
,
R.
,
Kolekar
,
H.
, and
Kumar
,
S.
,
2017
, “
Effect of CO2 Dilution on Laminar Burning Velocities of Methane-Air Mixture at Elevated Temperatures
,”
National Aerospace Propulsion Conference, Indian Institute of Technology Kanpur
, Mar. 15–17, 2017, IIT Kanpur, Kanpur, India, Paper No.
NAPC-2017-069
.
40.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M. C.
,
Bowman
,
T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, 2019, “GRI-MECH 3.0,” accessed Aug 30, 2019, http://combustion.berkeley.edu/gri-mech/version30/text30.html
41.
University of California at San Diego,
2019
, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” San Diego Mechanism Web Page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, San Diego, CA, accessed Aug 30, 2019, http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
42.
Burke
,
M. P.
,
Chen
,
Z.
,
Ju
,
Y.
, and
Dryer
,
F. L.
,
2009
, “
Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames
,”
Combust. Flame
,
156
(
4
), pp.
771
779
.10.1016/j.combustflame.2009.01.013
43.
Kelley
,
A. P.
, and
Law
,
C. K.
,
2009
, “
Nonlinear Effects in the Extraction of Laminar Flame Speeds From Expanding Spherical Flames
,”
Combust. Flame
,
156
(
9
), pp.
1844
1851
.10.1016/j.combustflame.2009.04.004
44.
Ronnachart
,
M.
,
Chung
,
B.
,
Shing
,
L.
,
Khansorn
,
P.
,
Thanisorn
,
P.
,
Yossapong
,
L.
,
Jugjai
,
S.
, and
Somchai
,
C.
,
2013
, “
Design of Constant Volume Combustion Chamber (CVCC) With Pre-Combustion Technique for Simulation of CI Engine Conditions
,”
Fourth TSME International Conference on Mechanical Engineering
, Pattaya, Chonburi, Oct. 16–18, Paper No.
AEC-1013
. https://www.researchgate.net/publication/273756171_Design_of_Constant_Volume_Combustion_Chamber_CVCC_with_Pre-Combustion_Technique_for_Simulation_of_CI_Engine_Conditions
45.
ASTM International
,
2015
, “
Standard Test Method for Concentration Limits of Flammability of Chemicals (Vapors and Gases)
,” ASTM International, West Conshohocken, PA, Standard No. ASTM E681-09.
46.
Settles
,
G. S.
,
2001
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
,
Springer Berlin Heidelberg
,
Berlin
, pp.
165
261
.
47.
Duva
,
B. C.
,
Chance
,
L.
,
Elizabeth
., and
Toulson
,
E.
, “
A Review of Laminar Burning Velocity Determination From Spherically Expanding Flames in Constant Volume Combustion Chambers
,”
Combust. Flame
, epub.
48.
Bradley
,
D.
,
Gaskell
,
P. H.
, and
Gu
,
X. J.
,
1996
, “
Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study
,”
Combust. Flame
,
104
(
1–2
), pp.
176
198
.10.1016/0010-2180(95)00115-8
49.
Kee
,
R. J.
,
Grcar
,
J. F.
,
Smooke
,
M. D.
,
Miller
,
J. A.
, and
Meeks
,
E.
,
1985
, “
PREMIX: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames
,” epub.
50.
Chen
,
Z.
,
2015
, “
On the Accuracy of Laminar Flame Speeds Measured From Outwardly Propagating Spherical Flames: Methane/Air at Normal Temperature and Pressure
,”
Combust. Flame
,
162
(
6
), pp.
2442
2453
.10.1016/j.combustflame.2015.02.012
51.
Chen
,
Z.
,
Burke
,
M. P.
, and
Ju
,
Y.
,
2009
, “
Effects of Lewis Number and Ignition Energy on the Determination of Laminar Flame Speed Using Propagating Spherical Flames
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1253
1260
.10.1016/j.proci.2008.05.060
52.
Kim
,
H. H.
,
Won
,
S. H.
,
Santner
,
J.
,
Chen
,
Z.
, and
Ju
,
Y.
,
2013
, “
Measurements of the Critical Initiation Radius and Unsteady Propagation of n-Decane/Air Premixed Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
929
936
.10.1016/j.proci.2012.07.035
53.
Chen
,
Z.
,
2011
, “
On the Extraction of Laminar Flame Speed and Markstein Length From Outwardly Propagating Spherical Flames
,”
Combust. Flame
,
158
(
2
), pp.
291
300
.10.1016/j.combustflame.2010.09.001
54.
Markstein
,
G. H.
,
1951
, “
Experimental and Theoretical Studies of Flame-Front Stability
,”
J. Aeronaut. Sci.
,
18
(
3
), pp.
199
209
.10.2514/8.1900
55.
Kelley
,
A. P.
,
Bechtold
,
J. K.
, and
Law
,
C. K.
,
2012
, “
Premixed Flame Propagation in a Confining Vessel With Weak Pressure Rise
,”
J. Fluid Mech.
,
691
, pp.
26
51
.10.1017/jfm.2011.439
56.
Wu
,
F.
,
Liang
,
W.
,
Chen
,
Z.
,
Ju
,
Y.
, and
Law
,
C. K.
,
2015
, “
Uncertainty in Stretch Extrapolation of Laminar Flame Speed From Expanding Spherical Flames
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
663
670
.10.1016/j.proci.2014.05.065
57.
Courty
,
L.
,
Chetehouna
,
K.
,
Chen
,
Z.
,
Halter
,
F.
,
Mounaïm-Rousselle
,
C.
, and
Garo
,
J.-P.
,
2014
, “
Determination of Laminar Burning Speeds and Markstein Lengths of p-Cymene/Air Mixtures Using Three Models
,”
Combust. Sci. Technol.
,
186
(
4–5
), pp.
490
503
.10.1080/00102202.2014.883224
58.
Egolfopoulos
,
F. N.
,
Cho
,
P.
, and
Law
,
C. K.
,
1989
, “
Laminar Flame Speeds of Methane-Air Mixtures Under Reduced and Elevated Pressures
,”
Combust. Flame
,
76
(
3–4
), pp.
375
391
.10.1016/0010-2180(89)90119-3
59.
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
,
1994
, “
The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO+OH Reaction
,”
Symp. (Int.) Combust.
,
25
(
1)
, pp.
749
757
. 10.1016/S0082-0784(06)80707-1
60.
Park
,
O.
,
Veloo
,
P.
,
Wang
,
H.
, and
Egolfopoulos
,
F.
,
2012
, “
Chemical Kinetic Uncertainty Minimization Through Laminar Flame Speed Measurements
,” 172, pp.
136
152
.
61.
Ren
,
F.
,
Chu
,
H.
,
Xiang
,
L.
,
Han
,
W.
, and
Gu
,
M.
,
2018
, “
Effect of Hydrogen Addition on the Laminar Premixed Combustion Characteristics the Main Components of Natural Gas
,”
J. Energy Inst.
,
92
(
4
), pp.
1178
1190
.10.1016/j.joei.2018.05.011
62.
Galmiche
,
B.
,
Halter
,
F.
, and
Foucher
,
F.
,
2012
, “
Effects of High Pressure, High Temperature and Dilution on Laminar Burning Velocities and Markstein Lengths of Iso-Octane/Air Mixtures
,”
Combust. Flame
,
159
(
11
), pp.
3286
3299
.10.1016/j.combustflame.2012.06.008
63.
Duva
,
B. C.
,
Chance
,
L. E.
, and
Toulson
,
E.
,
2019
, “
Laminar Flame Speeds of Premixed Iso-Octane/Air Flames at High Temperatures With CO2 Dilution
,”
SAE
Paper No. 2019-01-0572.10.4271/2019-01-0572
64.
Yadav
,
V. K.
,
Vishwa
,
R. M.
,
Mishra
,
A.
, and
Yadav
,
J. P.
,
2017
, “
Sensitivity Analysis of CO2 Diluted and H2 Enriched Methane for Stoichiometric Combustion
,”
Int. J. Adv. Res. Sci. Eng.
,
6
(
2
), pp.
48
55
.http://www.ijarse.com/images/fullpdf/1514969754_TE01-016.pdf
You do not currently have access to this content.