Abstract

Foil bearings are strong candidates to support oil-free turbomachinery. Although foil bearings are a widely used technology, models describing their behavior are not validated using the film pressure, which is the fundamental variable of any fluid film bearing. This paper presents pressure profiles measured within the gas film of a journal foil bearing. The pressure is measured using an instrumented rotor with embedded pressure probes and wireless telemetry. The measurements yield the simultaneous circumferential pressure profiles at two axial positions inside the bearing. Proximity probes on the bearing allowed the measurement of the corresponding rotor orbits. The bearing under investigation is a bump-type compliant journal bearing, with a nominal diameter of 40 mm, an L/D = 1, and was tested up to 37.5 krpm. Load-displacement and break-away tests were performed on the test bearing in order to identify bearing parameters necessary for reproducibility. The pressure profiles are compared to a frequency domain foil bearing model. This paper is a step toward further fundamental understanding of the foil bearing behavior and the validation of the rich modeling literature.

References

1.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,”
ASME
Paper No. 97-GT-347.10.1115/97-GT-347
2.
Heshmat
,
H.
,
Tomaszewski
,
M. J.
,
Walton
,
I.
, and
James
,
F.
,
2006
, “
Small Gas Turbine Engine Operating With High-Temperature Foil Bearings
,”
ASME
Paper No. GT2006-90791.10.1115/GT2006-90791
3.
Gu
,
A.
,
1994
, “
Cryogenic Foil Bearing Turbopumps
,”
AIAA
Paper No. AIAA 94–0868.10.2514/6.1994-868
4.
Wade
,
J. L.
,
Lubell
,
D. R.
, and
Weissert
,
D.
,
2008
, “
Successful Oil-Free Version of a Gas Compressor Through Integrated Design of Foil Bearings
,”
ASME
Paper No. GT2008-50349.10.1115/GT2008-50349
5.
Lee
,
Y.-B.
,
Bum Kwon
,
S.
,
Kim
,
T. H.
, and
Sim
,
K.
,
2013
, “
Feasibility Study of an Oil-Free Turbocharger Supported on Gas Foil Bearings Via on-Road Tests of a Two-Liter Class Diesel Vehicle
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
052701
.10.1115/1.4007883
6.
Ruscitto
,
D.
,
McCormick
,
J.
, and
Gray
,
S.
,
1978
, “
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine—I: Journal Bearing Performance
,” National Aeronautics and Space Administration, Cleveland, OH, Report No. NASA CR 135368.
7.
Mai
,
T.
,
2015
, “
Technology Readiness Level
,” National Aeronautics and Space Administration, Cleveland, OH, accessed Sep. 5, 2018, http://www.nasa.gov/directorates/heo/scan/engineering/technology/txt_accordion1. html
8.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2009
, “
Analysis of Gas Foil Bearings Integrating FE Top Foil Models
,”
Tribol. Int.
,
42
(
1
), pp.
111
120
.10.1016/j.triboint.2008.05.003
9.
Shalash
,
K.
, and
Schiffmann
,
J.
,
2019
, “
An Instrumented High-Speed Rotor With Embedded Telemetry for the Continuous Spatial Pressure Profile Measurement in Gas Lubricated Bearings: A Proof of Concept
,”
ASME
Paper No. GT2019-90983.10.1115/GT2019-90983
10.
Shalash
,
K.
, and
Schiffmann
,
J.
,
2017
, “
Comparative Evaluation of Foil Bearings With Different Compliant Structures for Improved Manufacturability
,”
ASME
Paper No. GT2017-63615.10.1115/GT2017-63615
11.
Shalash
,
K.
, and
Schiffmann
,
J.
,
2017
, “
On the Manufacturing of Compliant Foil Bearings
,”
J. Manuf. Process.
,
25
, pp.
357
368
.10.1016/j.jmapro.2016.12.021
12.
Kim
,
T. H.
, and
Andrés
,
L. S.
,
2009
, “
Effects of a Mechanical Preload on the Dynamic Force Response of Gas Foil Bearings: Measurements and Model Predictions
,”
Tribol. Trans.
,
52
(
4
), pp.
569
580
.10.1080/10402000902825721
13.
Schiffmann
,
J.
, and
Spakovszky
,
Z. S.
,
2012
, “
Foil Bearing Design Guidelines for Improved Stability
,”
ASME J. Tribol.
,
135
(
1
), p.
011103
.10.1115/1.4007759
14.
Dellacorte
,
C.
,
Lukaszewicz
,
V.
,
Valco
,
M. J.
,
Radil
,
K. C.
, and
Heshmat
,
H.
,
2000
, “
Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery
,”
Tribol. Trans.
,
43
(
4
), pp.
774
780
.10.1080/10402000008982407
15.
Fuller
,
D. D.
,
1969
, “
A Review of the State-of-the-Art for the Design of Self-Acting Gas-Lubricated Bearings
,”
J. Lubr. Technol.
,
91
(
1
), pp.
1
16
.10.1115/1.3554857
16.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2008
, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012504
.10.1115/1.2770494
17.
Lund
,
J. W.
,
1968
, “
Calculation of Stiffness and Damping Properties of Gas Bearings
,”
J. Lubr. Technol.
,
90
(
4
), pp.
793
803
.10.1115/1.3601723
18.
Faria
,
M. T. C.
, and
Andrés
,
L. S.
,
1999
, “
On the Numerical Modeling of High-Speed Hydrodynamic Gas Bearings
,”
ASME J. Tribol.
,
122
(
1
), pp.
124
130
.10.1115/1.555335
19.
Faria
,
M. T. C.
,
2001
, “
Some Performance Characteristics of High Speed Gas Lubricated Herringbone Groove Journal Bearings
,”
JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf.
,
44
(
3
), pp.
775
781
.10.1299/jsmec.44.775
20.
Blok
,
H.
, and
vanRossum
,
J.
,
1953
, “
The Foil Bearing—A New Departure in Hydrodynamic Lubrication
,”
Lubr. Eng.
,
9
(
6
), pp.
316
20
.
21.
Lee
,
D.-H.
,
Kim
,
Y.-C.
, and
Kim
,
K.-W.
,
2008
, “
The Static Performance Analysis of Foil Journal Bearings Considering Three-Dimensional Shape of the Foil Structure
,”
ASME J. Tribol.
,
130
(
3
), p.
031102
.10.1115/1.2913538
22.
Feng
,
K.
, and
Kaneko
,
S.
,
2010
, “
Analytical Model of Bump-Type Foil Bearings Using a Link-Spring Structure and a Finite-Element Shell Model
,”
ASME J. Tribol.
,
132
(
2
), p.
021706
.10.1115/1.4001169
You do not currently have access to this content.