Abstract

This paper presents the preliminary design and techno-economic assessment of an innovative solar system for the simultaneous production of water and electricity at small scale, based on the combination of a solar micro gas turbine (mGT) and a bottoming desalination unit. To assess this system, a design model is developed to select the main design parameters for two different desalination technologies, reverse osmosis (RO), and multi-effect distillation (MED), aiming to exploit the available electricity and waste heat from the turbine, respectively. The results show that, from a thermodynamic standpoint, it is possible to exceed 65% solar energy utilization if both electricity and waste heat are used to produce fresh water. Nevertheless, the better thermodynamic performance of the fully integrated system does not translate into a more economical production of water. Indeed, the cost of water turns out lower when coupling the solar microturbine and reverse osmosis units only (between 3 and 3.5 €/m3), while making further use of the available waste heat in a multi-effect distillation system rises the cost of water by 15%.

References

1.
Aichmayer
,
L.
,
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2013
, “
Micro Gas-Turbine Design for Small-Scale Hybrid Solar Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
113001
.10.1115/1.4025077
2.
Lanchi
,
M.
,
Crescenzi
,
T.
,
Mele
,
D.
,
Miliozzi
,
A.
,
Russo
,
V.
,
Mazzei
,
D.
,
Misceo
,
M.
,
Falchetta
,
M.
, and
Mancini
,
R.
,
2014
, “
Investigation Into the Coupling of Micro Gas Turbines With CSP Technology: OMSoP Project
,”
International Conference on Concentrating Solar Power and Chemical Energy Systems—SolarPACES
, Beijing, China, Sept. 16–19, pp.
1317
1326
.https://www.researchgate.net/publication/277980176_Investigation_into_the_Coupling_of_Micro_Gas_Turbines_with_CSP_Technology_OMSoP_Project
3.
Aichmayer
,
L.
,
Spelling
,
J.
, and
Laumert
,
B.
,
2015
, “
Preliminary Design and Analysis of a Novel Solar Receiver for a Micro Gas-Turbine Based Solar Dish System
,”
Sol. Energy
, 114, pp.
378
396
.10.1016/j.solener.2015.01.013
4.
Wang
,
W.
,
Ragnolo
,
G.
,
Aichmayer
,
L.
,
Strand
,
T.
, and
Laumert
,
B.
,
2015
, “
Integrated Design of a Hybrid Gas Turbine–Receiver Unit for a Solar Dish System
,”
International Conference on Concentrating Solar Power and Chemical Energy Systems—SolarPACES
, Beijing, China, Sept. 16–19, pp.
583
592
.https://www.researchgate.net/publication/279212972_Integrated_Design_of_a_Hybrid_Gas_Turbine-receiver_Unit_for_a_Solar_Dish_System
5.
Various
,
2015
,
Report on Short Term Storage Testing and Evaluation. OMSoP Deliverable Report
,
University of Rome
,
Rome, Italy
, Report No. D1.2.
6.
Arroyo
,
A.
,
McLorn
,
M.
,
Fabian
,
M.
,
White
,
M.
, and
Sayma
,
A.
,
2016
, “
Rotor-Dynamics of Different Shaft Configurations for a 6 kW Micro Gas Turbine for Concentrated Solar Power
,”
ASME
Paper No. GT2016-56479.10.1115/GT2016-56479
7.
Iaria
,
D.
,
Khader
,
M.
,
Alzaili
,
J.
, and
Sayma
,
A.
,
2017
, “
Multi-Objective Optimisation of a Centrifugal Compressor for Gas Turbine Operated by Concentrated Solar Power
,” Global Power and Propulsion Forum, Zurich, Switzerland, Jan. 16–18, Paper No. GPPF-2017-33.
8.
Ghavami
,
M.
,
Alzaili
,
J.
, and
Sayma
,
A.
,
2017
, “
A Comparative Study of the Control Strategies for Pure Concentrated Solar Power Micro Gas Turbines
,”
ASME
Paper No. GT2017-63987.10.1115/GT2017-63987
9.
Sánchez
,
D.
,
Bortkiewicz
,
A.
,
Rodríguez
,
J.
,
Martínez
,
G.
,
Gavagnin
,
G.
, and
Sánchez
,
T.
,
2016
, “
A Methodology to Identify Potential Markets for Small-Scale Solar Thermal Power Generators
,”
Appl. Energy
,
169
, pp.
287
300
.10.1016/j.apenergy.2016.01.114
10.
Gavagnin
,
G.
,
Sánchez
,
D.
,
Martínez
,
G. S.
,
Rodríguez
,
J. M.
, and
Muñoz
,
A.
,
2017
, “
Cost Analysis of Solar Thermal Power Generators Based on Parabolic Dish and Micro Gas Turbine: Manufacturing, Transportation and Installation
,”
Appl. Energy
,
194
, pp.
108
122
.10.1016/j.apenergy.2017.02.052
11.
Gavagnin
,
G.
,
Sánchez
,
D.
,
Rodríguez
,
J.
,
Muñoz
,
A.
, and
Martínez
,
G.
,
2017
, “
Economic-Competitiveness of Dish-mGT Solar Power Generators
,”
ASME
Paper No. GT2017-64351.10.1115/GT2017-64351
12.
Buenaventura-Pouyfaucon
,
A.
, and
García-Rodríguez
,
L.
,
2018
, “
Solar Thermal-Powered Desalination: A Viable Solution for a Potential Market
,”
Desalination
,
435
, pp.
60
69
.10.1016/j.desal.2017.12.025
13.
García-Rodríguez
,
L.
,
2017
, “
Current Trends and Future Prospects of Renewable-Energy Driven Desalination (RE-DES)
,”
Renewable Energy Technologies for Water Desalination
,
H.
Mahmoudi
,
N.
Ghaffour
,
M. F. A.
Goosen
, and
J.
Bundschuh
, eds.,
CRC Press
, Leiden, The Netherlands, pp.
261
278
.
14.
Delgado-Torres
,
A.
,
García-Rodríguez
,
L.
,
Peñate
,
B.
,
de la Fuente
,
J. A.
, and
Melián
,
G.
,
2018
, “
Water Desalination by Solar-Powered RO Systems
,”
Current Trends and Future Developments on (Bio-) Membranes
,
A.
Cassano
,
A.
Figoli
, and
A.
Basile
, eds.,
Elsevier
, Amsterdam, The Netherlands, pp.
45
84
.
15.
Palenzuela
,
P.
,
Zaragoza
,
G.
,
Peñate
,
P.
,
Subiela
,
V.
,
Alarcón-Padilla
,
D.
, and
García-Rodríguez
,
L.
,
2017
, “
The Use of Solar Energy for Small-Scale Autonomous Desalination
,”
Renewable Energy Technologies for Water Desalination
,
H.
Mahmoudi
,
N.
Ghaffour
,
M. F. A.
Goosen
, and
J.
Bundschuh
, eds.,
CRC Press
, Leiden, The Netherlands, pp.
13
42
.
16.
The Dow Chemical Company, 2014, “
DOW Water & Process Solutions—FilmtecTM Membrane Elements,” Dow, Midland, MI, accessed Sept. 30, 2019,
http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_096d/0901b8038096db86.pdf?filepath=productsafety/pdfs/noreg/233-00348.pdf&fromPage=GetDoc
17.
Danfoss Power Solutions,
2016
, “
Danfoss: Technical Information of Axial Piston Pumps
, Series 90,” Danfoss, Ames, IA, accessed Sept. 30, 2019, https://assets.danfoss.com/documents/DOC152886483473/DOC152886483473.pdf
18.
Danfoss Power Solutions,
2018
, “Danfoss: Data Sheet iSave Energy Recovery Device iSave 50/iSave 70
”, Danfoss A/S, Nordborg, Denmark, accessed Sept. 30, 2010,
https://assets.danfoss.com/documents/DOC264763847436/DOC264763847436.pdf
19.
Energy Recovery,
2018
, “
Energy Recovery: Desalination Products Catalog”, Energy Recovery , San Leandro, CA, accessed Sept. 30, 2019,
http://www.energyrecovery.com/wp-content/uploads/2014/12/0218_ER_desalProducts_web.pdf
20.
Darwish
,
M. A.
, and
Abdulrahim
,
H. K.
,
2008
, “
Feed Water Arrangements in a Multi-Effect Desalting System
,”
Desalination
,
228
(
1–3
), pp.
30
54
.10.1016/j.desal.2007.05.039
21.
Pankratz, T. M.
,
2010
,
IDA Desalination Yearbook,
Media Analytics
,
Oxford, UK
.
22.
Morillo
,
J.
,
Usero
,
J.
,
Rosado
,
D.
,
El Bakouri
,
H.
,
Riaza
,
A.
, and
Bernaola
,
F. J.
,
2014
, “
Comparative Study of Brine Management Technologies for Desalination Plants
,”
Desalination
,
336
, pp.
32
49
.10.1016/j.desal.2013.12.038
23.
Stine
,
W.
, and
Harrigan
,
R.
,
1985
,
Solar Energy Fundamentals and Design
, 1st ed.,
Wiley
, New York.
24.
Various
,
2013
,
Optimised Dish Design
,
Innova
,
Rome, Italy
, OMSoP Deliverable, Report No. D1.5.
25.
Semprini
,
S.
,
Sánchez
,
D.
, and
De Pascale
,
A.
,
2016
, “
Performance Analysis of a Micro Gas Turbine and Solar Dish Integrated System Under Different Solar-Only and Hybrid Operating Conditions
,”
Sol. Energy
,
132
, pp.
279
293
.10.1016/j.solener.2016.03.012
26.
Rogers
,
M.
,
Rockers
,
C.
,
Uhlig
,
R.
,
Neumann
,
F.
, and
Polenzky
,
C.
,
2009
, “
Infrared-Reflective Coating on Fused Silica for a Solar High-Temperature Receiver
,”
ASME J. Sol. Energy Eng.
,
131
, pp.
021004
021007
.10.1115/1.3097270
27.
Balje
,
O.
,
1981
,
Turbomachines a Guide to Design Selection and Theory
, 1st ed.,
Wiley
, New York.
28.
Morin
,
O.
,
1993
, “
Design and Operating Comparison of MSF and MED Systems
,”
Desalination
,
93
(
1–3
), pp.
69
109
.10.1016/0011-9164(93)80097-7
29.
Sharqawy
,
M.
,
Lienhard
,
J.
, and
Zubair
,
S.
,
2010
, “
Thermophysical Properties of Seawater: A Review of Existing Correlations and Data
,”
Desalin. Water Treat.
,
16
(
1–3
), pp.
354
380
.10.5004/dwt.2010.1079
30.
Gavagnin
,
G.
,
2019
, “
Techno-Economic Optimization of a Solar Thermal Power Generator Based on Parabolic Dish and Micro Gas Turbine
,” Ph.D. thesis, School of Engineering, University of Seville, Seville, Spain.
31.
Ávila-Marín
,
A.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
(
5
), pp.
891
910
.10.1016/j.solener.2011.02.002
32.
Gavagnin
,
G.
,
Rech
,
S.
,
Sánchez
,
D.
, and
Lazzaretto
,
A.
,
2018
, “
Optimum Design and Performance of a Solar Dish Microturbine Using Tailored Component Characteristics
,”
Appl. Energy
,
231
, pp.
660
676
.10.1016/j.apenergy.2018.09.140
33.
Wilf
,
M.
,
2007
,
The Guidebook to Membrane Desalination Technology. Reverse Osmosis, Nanofiltration and Hybrid Systems Process, Design, Applications and Economics
,
Balaban Desalination Publications
, L'Aquila, Italy.
34.
Iaria
,
D.
,
2019
, “
Techno-Economic Assessment of a Solar Dish Micro Gas Turbine System
,” Ph.D. thesis, School of Mathematics, Computer Science and Engineering, City University of London, London, UK.
35.
El-Dessouky
,
H.
,
Ettouney
,
H.
, and
Mandani
,
F.
,
2000
, “
Performance of Parallel Feed Multiple Effect Evaporation System for Seawater Desalination
,”
Appl. Therm. Eng.
,
20
(
17
), pp.
1679
1706
.10.1016/S1359-4311(99)00098-8
You do not currently have access to this content.