Natural gas is traditionally considered as a promising fuel in comparison with gasoline due to the potential of lower emissions and significant domestic reserves. These emissions can be further diminished by using noble gases, such as argon, instead of nitrogen as the working fluid in internal combustion engines. Furthermore, the use of argon as the working fluid can increase the thermodynamic efficiency due to its higher specific heat ratio. In comparison with premixed operation, the direct injection of natural gas enables the engine to reach higher compression ratios while avoiding knock. Using argon as the working fluid increases the in-cylinder temperature at top dead center (TDC) and enables the compression ignition (CI) of natural gas. In this numerical study, the combustion quality and ignition behavior of methane injected into a mixture of oxygen and argon have been investigated using a three-dimensional transient model of a constant volume combustion chamber (CVCC). A dynamic structure large eddy simulation (LES) model has been utilized to capture the behavior of the nonpremixed turbulent gaseous jet. A reduced mechanism consists of 22-species, and 104-reactions were coupled with the CFD solver. The simulation results show that the methane jet ignites at engine-relevant conditions when nitrogen is replaced by argon as the working fluid. Ignition delay times are compared across a variety of operating conditions to show how mixing affects jet development and flame characteristics.

References

1.
Dresselhaus
,
M.
, and
Thomas
,
I.
,
2001
, “
Alternative Energy Technologies
,”
Nature
,
414
(
6861
), p.
332
.
2.
Hekkert
,
M. P.
,
Hendriks
,
F. H.
,
Faaij
,
A. P.
, and
Neelis
,
M. L.
,
2005
, “
Natural Gas as an Alternative to Crude Oil in Automotive Fuel Chains Well-to-Wheel Analysis and Transition Strategy Development
,”
Energy Policy
,
33
(
5
), pp.
579
594
.
3.
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2016
, “
Application of a Turbulent Jet Flame Flashback Propensity Model to a Commercial Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041506
.
4.
Javaheri
,
A.
,
Esfahanian
,
V.
,
Salavati-Zadeh
,
A.
, and
Darzi
,
M.
,
2014
, “
Energetic and Exergetic Analyses of a Variable Compression Ratio Spark Ignition Gas Engine
,”
Energy Convers. Manage.
,
88
, pp.
739
748
.
5.
Morovatiyan
,
M.
,
Shahsavan
,
M.
, and
Mack
,
J. H.
,
2018
, “
Development of a Constant Volume Combustion Chamber for Material Synthesis
,”
Eastern States Section of the Combustion Institute Spring Technical Meeting
, State College, PA, Mar. 4–7, Paper No. 1C11.
6.
Johnson
,
D. R.
,
Heltzel
,
R.
,
Nix
,
A. C.
,
Clark
,
N.
, and
Darzi
,
M.
,
2017
, “
Greenhouse Gas Emissions and Fuel Efficiency of In-Use High Horsepower Diesel, Dual Fuel, and Natural Gas Engines for Unconventional Well Development
,”
Appl. Energy
,
206
, pp.
739
750
.
7.
Szwaja
,
S.
,
Ansari
,
E.
,
Rao
,
S.
,
Szwaja
,
M.
,
Grab-Rogalinski
,
K.
,
Naber
,
J. D.
, and
Pyrc
,
M.
,
2018
, “
Influence of Exhaust Residuals on Combustion Phases, Exhaust Toxic Emission and Fuel Consumption From a Natural Gas Fueled Spark-Ignition Engine
,”
Energy Convers. Manage.
,
165
, pp.
440
446
.
8.
Morovatiyan
,
M. R.
, and
Hosseini
,
V.
,
2014
, “
Development of a 3D CFD Model to Analyze Gas Exchange Process Into Intake Manifold of an iVVT Engine
,”
J. Engine Res.
,
36
(
36
), pp.
51
60
.http://engineresearch.ir/article-1-426-en.html
9.
Flowers
,
D.
,
Aceves
,
S.
,
Westbrook
,
C.
,
Smith
,
J.
, and
Dibble
,
R.
,
2001
, “
Detailed Chemical Kinetic Simulation of Natural Gas HCCI Combustion: Gas Composition Effects and Investigation of Control Strategies
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
433
439
.
10.
Hammond
,
Z. M.
,
Mack
,
J. H.
, and
Dibble
,
R. W.
,
2016
, “
Effect of Hydrogen Peroxide Addition to Methane Fueled Homogeneous Charge Compression Ignition Engines Through Numerical Simulations
,”
Int. J. Engine Res.
,
17
(
2
), pp.
209
220
.
11.
Nobakht
,
A. Y.
,
Saray
,
R. K.
, and
Rahimi
,
A.
,
2011
, “
A Parametric Study on Natural Gas Fueled HCCI Combustion Engine Using a Multi-Zone Combustion Model
,”
Fuel
,
90
(
4
), pp.
1508
1514
.
12.
Shahsavan
,
M.
, and
Mack
,
J. H.
,
2018
, “
Numerical Study of a Boosted HCCI Engine Fueled With n-Butanol and Isobutanol
,”
Energy Convers. Manage.
,
157
, pp.
28
40
.
13.
Ansari
,
E.
,
Poorghasemi
,
K.
,
Irdmousa
,
B. K.
,
Shahbakhti
,
M.
, and
Naber
,
J.
,
2016
, “
Efficiency and Emissions Mapping of a Light Duty Diesel-Natural Gas Engine Operating in Conventional Diesel and RCCI Modes
,”
SAE
Paper No. 2016-01-2309.
14.
Paykani
,
A.
,
Kakaee
,
A.-H.
,
Rahnama
,
P.
, and
Reitz
,
R. D.
,
2015
, “
Effects of Diesel Injection Strategy on Natural Gas/Diesel Reactivity Controlled Compression Ignition Combustion
,”
Energy
,
90
, pp.
814
826
.
15.
Poorghasemi
,
K.
,
Saray
,
R. K.
,
Ansari
,
E.
,
Irdmousa
,
B. K.
,
Shahbakhti
,
M.
, and
Naber
,
J. D.
,
2017
, “
Effect of Diesel Injection Strategies on Natural Gas/Diesel RCCI Combustion Characteristics in a Light Duty Diesel Engine
,”
Appl. Energy
,
199
, pp.
430
446
.
16.
Johnson
,
D.
,
Darzi
,
M.
,
Ulishney
,
C.
,
Bade
,
M.
, and
Zamani
,
N.
,
2017
, “
Methods to Improve Combustion Stability, Efficiency, and Power Density of a Small, Port-Injected, Spark-Ignited, Two-Stroke Natural Gas Engine
,”
ASME
Paper No. ICEF2017-3557.
17.
Kakaee
,
A.-H.
,
Paykani
,
A.
, and
Ghajar
,
M.
,
2014
, “
The Influence of Fuel Composition on the Combustion and Emission Characteristics of Natural Gas Fueled Engines
,”
Renewable Sustainable Energy Rev.
,
38
, pp.
64
78
.
18.
Carlucci
,
A.
,
de Risi
,
A. D.
,
Laforgia
,
D.
, and
Naccarato
,
F.
,
2008
, “
Experimental Investigation and Combustion Analysis of a Direct Injection Dual-Fuel Diesel–Natural Gas Engine
,”
Energy
,
33
(
2
), pp.
256
263
.
19.
Kakaee
,
A.-H.
,
Jafari
,
P.
, and
Paykani
,
A.
,
2018
, “
Numerical Study of Natural Gas/Diesel Reactivity Controlled Compression Ignition Combustion With Large Eddy Simulation and Reynolds-Averaged Navier–Stokes Model
,”
Fluids
,
3
(
2
), p.
24
.
20.
Afkhami
,
B.
,
Kakaee
,
A.
, and
Pouyan
,
K.
,
2012
, “
Studying Engine Cold Start Characteristics at Low Temperatures for CNG and HCNG by Investigating Low-Temperature Oxidation
,”
Energy Convers. Manage.
,
64
, pp.
122
128
.
21.
Ma
,
F.
,
Wang
,
Y.
,
Liu
,
H.
,
Li
,
Y.
,
Wang
,
J.
, and
Zhao
,
S.
,
2007
, “
Experimental Study on Thermal Efficiency and Emission Characteristics of a Lean Burn Hydrogen Enriched Natural Gas Engine
,”
Int. J. Hydrogen Energy
,
32
(
18
), pp.
5067
5075
.
22.
Killingsworth
,
N. J.
,
Rapp
,
V. H.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
,
Chen
,
J.-Y.
, and
Dibble
,
R.
,
2011
, “
Increased Efficiency in SI Engine With Air Replaced by Oxygen in Argon Mixture
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3141
3149
.
23.
Kuroki
,
R.
,
Kato
,
A.
,
Kamiyama
,
E.
, and
Sawada
,
D.
,
2010
, “
Study of High Efficiency Zero-Emission Argon Circulated Hydrogen Engine
,”
SAE
Paper No. 2010-01-0581.
24.
Moneib
,
H. A.
,
Abdelaal
,
M.
,
Selim
,
M. Y.
, and
Abdallah
,
O. A.
,
2009
, “
NOx Emission Control in SI Engine by Adding Argon Inert Gas to Intake Mixture
,”
Energy Convers. Manage.
,
50
(
11
), pp.
2699
2708
.
25.
Sierra-Aznar
,
M.
,
Pineda
,
D. I.
,
Cage
,
B. S.
,
Shi
,
X.
,
Corvello
,
J. P.
,
Chen
,
J.-Y.
, and
Dibble
,
R. W.
,
2017
, “
Working Fluid Replacement in Gaseous Direct-Injection Internal Combustion Engines: A Fundamental and Applied Experimental Investigation
,”
Tenth U.S. National Combustion Meeting
, College Park, MD, Apr. 23–26, Paper No. 2F09.http://www.danielipineda.com/Daniel_I._Pineda_files/USnational_2017_APC_DI.pdf
26.
Hafiz
,
N. M.
,
Mansor
,
M. R. A.
, and
Wan Mahmood
,
W. M. F.
,
2018
, “
Simulation of the Combustion Process for a CI Hydrogen Engine in an Argon-Oxygen Atmosphere
,”
Int. J. Hydrogen Energy
,
43
(
24
), pp.
11286
11297
.
27.
Shahsavan
,
M.
, and
Mack
,
J.
,
2017
, “
The Effect of Heavy Working Fluids on Hydrogen Combustion
,”
Tenth U.S. National Combustion Meeting
, College Park, MD, Apr. 23--26, Paper No. 2F10.https://www.researchgate.net/publication/317704724_The_Effect_of_Heavy_Working_Fluids_on_Hydrogen_Combustion
28.
Mansor
,
M. R. A.
, and
Shioji
,
M.
,
2016
, “
Investigation of the Combustion Process of Hydrogen Jets Under Argon-Circulated Hydrogen-Engine Conditions
,”
Combust. Flame
,
173
, pp.
245
257
.
29.
Shahsavan
,
M.
,
Morovatiyan
,
M.
, and
Mack
,
J. H.
,
2018
, “
The Influence of Mixedness on Ignition for Hydrogen Direct Injection in a Constant Volume Combustion Chamber
,”
Eastern States Section of the Combustion Institute Spring Technical Meeting
, State College, PA, Mar. 4–7, Paper No. 2C02.
30.
Shahsavan
,
M.
,
Morovatiyan
,
M.
, and
Mack
,
J. H.
,
2018
, “
A Numerical Investigation of Hydrogen Injection Into Noble Gas Working Fluids
,”
Int. J. Hydrogen Energy
,
43
(
29
), pp.
13575
13582
.
31.
Shahsavan
,
M.
, and
Mack
,
J. H.
,
2017
, “
Mixedness Measurement in Gaseous Jet Injection
,”
American Society for Engineering Education Northeast Section
(
ASEE-NE
), Lowell, MA, Apr. 28–29, Paper No. 190https://www.researchgate.net/publication/317015539_Mixedness_Measurement_in_Gaseous_Jet_Injection.
32.
Cho
,
H. M.
, and
He
,
B.-Q.
,
2007
, “
Spark Ignition Natural Gas Engines—A Review
,”
Energy Convers. Manage.
,
48
(
2
), pp.
608
618
.
33.
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2008
, “
Jet Fuel Ignition Delay Times: Shock Tube Experiments Over Wide Conditions and Surrogate Model Predictions
,”
Combust. Flame
,
152
(
1–2
), pp.
125
143
.
34.
Borz
,
M. J.
,
Kim
,
Y.
, and
O'Connor
,
J.
,
2016
, “
The Effects of Injection Timing and Duration on Jet Penetration and Mixing in Multiple-Injection Schedules
,”
SAE
Paper No. 2016-01-0856.
35.
Naber
,
J. D.
, and
Siebers
,
D. L.
,
1996
, “
Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays
,”
SAE
Paper No. 960034.
You do not currently have access to this content.