In subsea environments, multiphase pumps and compressors add pressure to the process fluid, thus enabling long distance tie back systems that eliminate topside oil and gas separation stations. One challenge to construct a reliable multiphase pump or a reliable wet gas compressor is that the first must handle, without process upset, a mixture whose gas volume fraction (GVF) changes suddenly; while the other must remain stable while working with a liquid volume fraction (LVF) changing over long periods of time. The mixture GVF/LVF affects the static and dynamic forced performance of secondary flow components, namely seals, and which could lead to an increase in both rotor lateral or axial vibrations, thus compromising system reliability and availability. The current research is a planned endeavor toward developing seal configurations amenable to maintain rotor dynamic characteristics during changes in the contents of flow components. This paper extends prior work with uniform clearance annular seals and presents the static and dynamic forced performance of a three-wave surface annular seal designed to deliver a significant centering stiffness. The test element has length L = 43.4 mm, diameter D = 127 mm, and mean radial clearance cm=0.191 mm. At a shaft speed of 3.5 krpm (23 m/s surface speed), an air in ISO VG 10 oil mixture with an inlet GVF, 0 to 0.9, feeds the seal at 2.5 bara pressure and 37 °C temperature. The mixture mass flow rate decreases continuously with an increase in inlet GVF; shaft speed has little effect on it. Dynamic load tests serve to identify the seal dynamic force coefficients. The liquid seal (GVF = 0) shows frequency independent force coefficients. However, operation with a mixture produces stiffnesses that vary greatly with excitation frequency, in particular the direct one that hardens. The direct damping coefficients are not functions of frequency albeit dropping rapidly in magnitude as the GVF increases. The work also compares the performance of the wavy seal against those of two other seals: one with clearance equal to the mean clearance of the wavy seal, and the other with a large clearance emulating a fully worn wavy seal. The small clearance seal leaks 20% less than the wavy seal, whereas the leakage of the worn seal is twofold that of the wavy seal. For the three seals, the leakage normalized with respect to a pure liquid condition collapses into a single curve. The wavy seal produces the greatest direct stiffness and damping coefficients, whereas the worn seal produces the smallest force coefficients. Derived from a homogeneous mixture bulk flow model, predicted force coefficients for the three-wave seal match well with the test data for operation with a pure oil and an inlet GVF 0.2. For operation with GVF > 0.2, the discrepancy between the prediction and experimental data grows rapidly. The extensive test campaign reveals a wavy-surface seal offers a centering stiffness ability, a much desired feature in vertical submersible pumps that suffer from persistent static and dynamic stability issues.
Skip Nav Destination
Article navigation
March 2019
Research-Article
Leakage and Rotordynamic Force Coefficients of A Three-Wave (Air in Oil) Wet Annular Seal: Measurements and Predictions
Xueliang Lu,
Xueliang Lu
Mechanical Engineering Department,
Texas A&M University,
College Station, TX 77843
e-mail: luliang413@gmail.com
Texas A&M University,
College Station, TX 77843
e-mail: luliang413@gmail.com
Search for other works by this author on:
Luis San Andrés
Luis San Andrés
Fellow ASME
Mechanical Engineering Department,
Texas A&M University,
College Station, TX 77843
e-mail: Lsanandres@tamu.edu
Mechanical Engineering Department,
Texas A&M University,
College Station, TX 77843
e-mail: Lsanandres@tamu.edu
Search for other works by this author on:
Xueliang Lu
Mechanical Engineering Department,
Texas A&M University,
College Station, TX 77843
e-mail: luliang413@gmail.com
Texas A&M University,
College Station, TX 77843
e-mail: luliang413@gmail.com
Luis San Andrés
Fellow ASME
Mechanical Engineering Department,
Texas A&M University,
College Station, TX 77843
e-mail: Lsanandres@tamu.edu
Mechanical Engineering Department,
Texas A&M University,
College Station, TX 77843
e-mail: Lsanandres@tamu.edu
Contributed by the Structures and Dynamics Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 30, 2018; final manuscript received August 1, 2018; published online October 4, 2018. Editor: Jerzy T. Sawicki.
J. Eng. Gas Turbines Power. Mar 2019, 141(3): 032503 (11 pages)
Published Online: October 4, 2018
Article history
Received:
July 30, 2018
Revised:
August 1, 2018
Citation
Lu, X., and Andrés, L. S. (October 4, 2018). "Leakage and Rotordynamic Force Coefficients of A Three-Wave (Air in Oil) Wet Annular Seal: Measurements and Predictions." ASME. J. Eng. Gas Turbines Power. March 2019; 141(3): 032503. https://doi.org/10.1115/1.4041270
Download citation file:
Get Email Alerts
Temperature Dependence of Aerated Turbine Lubricating Oil Degradation from a Lab-Scale Test Rig
J. Eng. Gas Turbines Power
Multi-Disciplinary Surrogate-Based Optimization of a Compressor Rotor Blade Considering Ice Impact
J. Eng. Gas Turbines Power
Experimental Investigations on Carbon Segmented Seals With Smooth and Pocketed Pads
J. Eng. Gas Turbines Power
Related Articles
Experimental Force Coefficients for a Fully-Partitioned Pocket Damper Seal and Comparison to Other Two Seal Types
J. Eng. Gas Turbines Power (May,2023)
Effects of Clearance on the Performance of a Labyrinth Seal Under Wet-Gas Conditions
J. Eng. Gas Turbines Power (November,2020)
Experimental Study on the Performance of a See-Through Labyrinth Seal With Two-Phase, Mainly-Liquid Mixtures
J. Eng. Gas Turbines Power (January,2021)
Leakage and Force Coefficients of a Grooved Wet (Bubbly Liquid) Seal for Multiphase Pumps and Comparisons With Prior Test Results for a Three Wave Seal
J. Eng. Gas Turbines Power (January,2020)
Related Proceedings Papers
Related Chapters
Aerodynamic Performance Analysis
Axial-Flow Compressors
Methods for Measuring Air Leakage in High-Rise Apartments
Air Change Rate and Airtightness in Buildings
Summary and Conclusions
Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications