The ultra-compact combustor (UCC) is an innovative combustor system alternative to traditional turbine engine combustors with the potential for engine efficiency improvements with a reduced volume. Historically, the UCC cavity had been configured such that highly centrifugally loaded combustion took place in a recessed circumferential cavity positioned around the outside diameter (OD) of the engine. One of the obstacles with this design was that the combustion products had to migrate radially across the span of a vane while being pushed downstream by a central core flow. This configuration proved difficult to produce a uniform temperature distribution at the first turbine rotor. The present study has taken a different spin on the implementation of circumferential combustion. Namely, it aims to combine the combustion and space saving benefits of the highly centrifugally loaded combustion of the UCC in a new combustor orientation that places the combustor axially upstream of the turbine versus radially outboard. An iterative design approach was used to computationally analyze this new geometry configuration with the goal of fitting within the casing of a JetCat P90RXi. This investigation revealed techniques for implementation of this concept including small-scale combustor centrifugal air loading development, maintaining combustor circumferential swirl, combustion stability, and fuel distribution are reported. The final combustor configuration was manufactured and experimentally tested, validating the computational results. Furthermore, dramatic improvements in the uniformity of the turbine inlet temperature profiles are revealed over historical UCC concepts.

References

1.
Lewis
,
G. D.
,
1973
, “
Swirling Flow Combustion—Fundamentals and Application
,”
AIAA
Paper No. 73-1250.
2.
Briones
,
A. M.
,
Sekar
,
B.
, and
Erdmann
,
T. J.
,
2015
, “
Effect of Centrifugal Force on Turbulent Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
011501
.
3.
Conrad
,
M. M.
,
2013
, “
Integration of an Inter Turbine Burner to a Jet Turbine Engine
,”
M.S. thesis
, Air Force Institute of Technology, WPAFB, OH.http://www.dtic.mil/docs/citations/ADA582663
4.
Cottle
,
A. E.
, and
Polanka
,
M. D.
,
2015
, “
Optimization of Ultra Compact Combustor Flow Path Splits
,”
AIAA
Paper No. AIAA-2015-0100.
5.
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2017
, “
Development and Testing of a Variable Geometry Diffuser in an Ultra-Compact Combustor
,”
AIAA
Paper No. AIAA-2017-0777.
6.
DeMarco
,
K. J.
,
Bohan
,
B. T.
,
Hornedo
,
E. A.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2018
, “
Design Strategy for Fuel Introduction to a Circumferential Combustion Cavity
,”
AIAA
Paper No. AIAA-2018-1876.
7.
Yonezawa
,
Y.
,
Toh
,
H.
,
Goto
,
S.
, and
Obata
,
M.
,
1990
, “
Development of the Jet-Swirl High Loading Combustor
,”
AIAA
Paper No. AIAA-90-2451.
8.
Samuelsen
,
S.
,
2006
, “
Conventional Type Combustion
,”
The Gas Turbine Handbook
, U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (NETL), Morgantown, WV, Report No. DOE/NETL-2006-1230.
9.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
Effects of Combustor Exit Profiles on High Pressure Turbine Vane Aerodynamics and Heat Transfer
,”
ASME J. Turbomach.
,
131
(
2
), p.
021008
.
10.
Mattingly
,
J. D.
,
2006
,
Elements of Propulsion: Gas Turbines and Rockets
,
American Institute of Aeronautics and Astronautics
, Reston, VA, pp.
765
766
.
11.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2013
, “
Analysis of Flow Migration in an Ultra-Compact Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
051502
.
12.
Damele
,
C. J.
,
Polanka
,
M. D.
,
Wilson
,
J. D.
, and
Rutledge
,
J. L.
,
2014
, “
Characterizing Thermal Exit Conditions for an Ultra Compact Combustor
,”
AIAA
Paper No. AIAA-2014-0456.
13.
Lebay
,
K. D.
,
Polanka
,
M. D.
, and
Branam
,
R.
,
2011
, “
Characterizing the Effect of Radial Vane Height on Flame Migration in an Ultra Compact Combustor
,”
ASME
Paper No. GT 2011-45919.
14.
Gilbert
,
N. A.
,
Cottle
,
A. E.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2016
, “
Enhancing Flow Migration and Reducing Emissions in Full Annular Ultra Compact Combustor
,”
AIAA
Paper No. AIAA-2016-2122.
15.
Cottle
,
A. E.
,
Gilbert
,
N. A.
, and
Polanka
,
M. D.
,
2016
, “
Mechanisms for Enhanced Flow Migration From an Annular, High-g Ultra Compact Combustor
,”
AIAA
Paper No. AIAA-2016-1392.
16.
Cottle
,
A. E.
,
2016
, “
Flow Field Dynamics in a High-g Ultra-Compact Combustor
,”
Ph.D. thesis
, Air Force Institute of Technology, WPAFB, OH.http://www.dtic.mil/docs/citations/AD1032042
17.
Hornedo
,
E. A.
,
Bohan
,
B. T.
,
Cottle
,
A. E.
,
Schmiedel
,
C.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2017
, “
Design Strategy for Product Migration From a Circumferential Combustion Cavity
,”
AIAA
Paper No. AIAA-2017-0390.
18.
Briones
,
A. M.
,
Burrus
,
D. L.
,
Erdmann
,
T. J.
, and
Shouse
,
D. T.
,
2015
, “
Effect of Centrifugal Force on the Performance of High-g Ultra Compact Combustor
,”
ASME
Paper No. GT 2015-43445.
19.
Cottle
,
A. E.
, and
Polanka
,
M. D.
,
2016
, “
Numerical and Experimental Results From a Common-Source High-g Ultra-Compact Combustor
,”
ASME
Paper No. GT 2016-56215.
20.
ANSYS, 2016,
FLUENT 16.2 User's Guide
, ANSYS, Inc., Canonsburg, PA.
21.
Zelina
,
J.
,
Sturgess
,
G. J.
, and
Shouse
,
D. T.
,
2004
, “
The Behavior of an Ultra-Compact Combustor (Ucc) Based on Centrifugally-Enhanced Turbulent Burning Rates
,”
AIAA
Paper No. 2004-3541.
22.
Young
,
D. F.
,
Munson
,
B. R.
, and
Okiishi
,
T. H.
,
2004
,
A Brief Introduction to Fluid Mechanics
, 3rd ed.,
Wiley
,
Hoboken, NJ
, pp.
83
84
.
23.
Lapsa
,
A. P.
, and
Dahm
,
W. J.
,
2009
, “
Hyperacceleration Effects on Turbulent Combustion in Premixed Step-Stabilized Flames
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1731
1738
.
24.
Turns
,
S. R.
,
1996
,
An Introduction to Combustion
, 2nd ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.