The wake vortex is an important origin of unsteadiness and losses in turbines. In this paper, the development and underlying mechanisms of the shedding vortex of a high-pressure transonic turbine vane are studied and analyzed using the delayed detached eddy simulation (DDES) and proper orthogonal decomposition (POD). The goal is to understand the unsteadiness related to the wake vortex shedding and the wake evolution and mixing. Special attention is paid to the development of the wake vortex and the mechanisms behind the length characteristics. Interactions of the wake vortex with the shock wave and pressure waves are also discussed. First, the DDES simulation results are compared with published experimental data, Reynolds Averaged Navier-Stokes, and large eddy simulation (LES) simulations. Then, the development of the vane wake vortex, especially the different length characteristics from the cylinder vortex, is discussed. The reason of stronger pressure-side vortex shedding compared to suction-side vortex shedding is revealed. Wake-shock wave interaction and wake-pressure wave interaction are also investigated. The pressure waves are found to have a stronger effect than the shock wave on the spanwise motion and the dissipation of the wake vortex. An analysis of the losses through the turbine vane passage is carried out to evaluate the contributions of thermal and viscous irreversibilities. Losses analysis also confirms the strong interaction between the wake vortex and pressure waves. After that, POD study of the wake behavior was carried out. The results indicate that the shedding vortex is dominant in the unsteady flow. The phase relation between the pressure side wake vortex (PSVP) and the suction side wake vortex (SSVP) is confirmed.

References

1.
Brookfield
,
J.
,
Waitz
,
I.
, and
Sell
,
J.
,
1997
, “
Wake Decay: Effect of Freestream Swirl
,”
ASME
Paper No. 97-GT-495.
2.
Denos
,
R.
,
Sieverding
,
C.
,
Arts
,
T.
,
Brouckaert
,
J.
,
Paniagua
,
G.
, and
Michelassi
,
V.
,
1999
, “
Experimental Investigation of the Unsteady Rotor Aerodynamics of a Transonic Turbine Stage
,”
Proc. Inst. Mech. Eng., Part A
,
213
(
4
), pp.
327
338
.
3.
Wheeler
,
A. P.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
4.
Laskowski
,
G. M.
,
Kopriva
,
J.
,
Michelassi
,
V.
,
Shankaran
,
S.
,
Paliath
,
U.
,
Bhaskaran
,
R.
,
Wang
,
Q.
,
Talnikar
,
C.
,
Wang
,
Z. J.
, and
Jia
,
F.
,
2016
, “
Future Directions of High Fidelity CFD for Aerothermal Turbomachinery Analysis and Design
,”
AIAA
Paper No. 2016-3322.
5.
Roshko
,
A.
,
1954
, “On the Development of Turbulent Wakes From Vortex Streets,”
National Advisory Committee for Aeronautics
, Washington, DC, Report No.
1191
.https://authors.library.caltech.edu/428/
6.
Williamson
,
C. H.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
477
539
.
7.
Han
,
L.
, and
Cox
,
W.
,
1983
, “
A Visual Study of Turbine Blade Pressure-Side Boundary Layers
,”
ASME J. Eng. Power
,
105
(
1
), pp.
47
52
.
8.
Sieverding
,
C.
, and
Heinemann
,
H.
,
1989
, “
The Influence of Boundary Layer State on Vortex Shedding From Flat Plates and Turbine Cascades
,”
ASME
Paper No. 89-GT-296.
9.
Moore
,
J.
, and
Adhye
,
R.
,
1985
, “
Secondary Flows and Losses Downstream of a Turbine Cascade
,”
ASME J. Eng. Gas Turbines Power
,
107
(
4
), pp.
961
968
.
10.
Sieverding
,
C.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
11.
Michelassi
,
V.
,
Rodi
,
W.
, and
Giess
,
P.-A.
,
1997
, “
Experimental and Numerical Investigation of Boundary-Layer and Wake Development in a Transonic Turbine Cascade
,”
ASME
Paper No. 97-GT-483.
12.
Luo
,
J.
, and
Lakshminarayana
,
B.
,
1997
, “
Three-Dimensional Navier-Stokes Computation of Turbine Nozzle Flow With Advanced Turbulence Models
,”
ASME J. Turbomach.
,
119
(
3
), pp.
516
530
.
13.
Gehrer
,
A.
,
Lang
,
H.
,
Mayrhofer
,
N.
, and
Woisetschläger
,
J.
,
2000
, “
Numerical and Experimental Investigation of Trailing Edge Vortex Shedding Downstream of a Linear Turbine Cascade
,”
ASME
Paper No. 2000-GT-0434.
14.
Cicatelli
,
G.
, and
Sieverding
,
C.
,
1997
, “
The Effect of Vortex Shedding on the Unsteady Pressure Distribution Around the Trailing Edge of a Turbine Blade
,”
ASME J. Turbomach.
,
119
(
4
), pp.
810
819
.
15.
Sieverding
,
C. H.
,
Ottolia
,
D.
,
Bagnera
,
C.
,
Cimadoro
,
A.
, and
Desse
,
J.-M.
,
2003
, “
Unsteady Turbine Blade Wake Characteristics
,”
ASME
Paper No. GT2003-38934.
16.
Tucker
,
P. G.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 1–Progress and Challenges
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
522
545
.
17.
Im
,
H.-S.
, and
Zha
,
G.-C.
,
2014
, “
Delayed Detached Eddy Simulation of Airfoil Stall Flows Using High-Order Schemes
,”
ASME J. Fluid Eng.
,
136
(
11
), p.
111104
.
18.
Xiao
,
Z.
,
Zhang
,
Y.
,
Huang
,
J.
,
Chen
,
H.
, and
Fu
,
S.
,
2007
, “
Prediction of Separation Flows around a 6: 1 Prolate Spheroid Using Rans/Les Hybrid Approaches
,”
Acta Mech. Sin.
,
23
(
4
), pp.
369
382
.
19.
Fu
,
S.
,
Xiao
,
Z.
,
Chen
,
H.
,
Zhang
,
Y.
, and
Huang
,
J.
,
2007
, “
Simulation of Wing-Body Junction Flows With Hybrid RANS/LES Methods
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1379
1390
.
20.
Spalart
,
P.
,
Jou
,
W.
,
Strelets
,
M.
, and
Allmaras
,
S.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
First AFOSR International Conference on DNS/LES
, Ruston, LA, Aug. 4–8, pp.
4
8
.http://www.cobaltcfd.com/pdfs/DES97.pdf
21.
Tucker
,
P. G.
,
2011
, “
Computation of Unsteady Turbomachinery Flows—Part 2: LES and Hybrids
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
546
569
.
22.
Li
,
Z.
,
Chen
,
H.
, and
Zhang
,
Y.
,
2016
, “
Validation of a Window-Embedded RANS/LES Method Based on Synthetic Turbulence
,”
AIAA
Paper No. 2016-0339.
23.
Bhaskaran
,
B.
,
2010
,
Large Eddy Simulation of High Pressure Turbine Cascade
,
Stanford University
,
Stanford, CA
.
24.
Morata
,
E. C.
,
Gourdain
,
N.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2012
, “
Effects of Free-Stream Turbulence on High Pressure Turbine Blade Heat Transfer Predicted by Structured and Unstructured LES
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5754
5768
.
25.
Wang
,
G.
,
Papadogiannis
,
D.
,
Duchaine
,
F.
,
Gourdain
,
N.
, and
Gicquel
,
L. Y.
,
2013
, “
Towards Massively Parallel Large Eddy Simulation of Turbine Stages
,”
ASME
Paper No. GT2013-94852.
26.
Kopriva
,
J. E.
,
Laskowski
,
G. M.
, and
Sheikhi
,
M. R. H.
,
2014
, “
Computational Assessment of Inlet Turbulence on Boundary Layer Development and Momentum/Thermal Wakes for High Pressure Turbine Nozzle and Blade
,”
ASME
Paper No. IMECE2014-38620.
27.
Lin
,
D.
,
Su
,
X.
, and
Yuan
,
X.
,
2016
, “
Delayed Detached-Eddy Simulations of a High Pressure Turbine Vane
,”
ASME
Paper No. GT2016-56911.
28.
Arts
,
T.
,
De Rouvroit
,
M. L.
, and
Rutherford
,
A.
,
1990
,
“Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,”
von Karman Institute for Fluid Dynamics
, Rhode Saint Genese, Belgium, Technical Note No. 174.
29.
Su
,
X.
, and
Yamamoto
,
S.
,
2013
, “
On the Accurate Prediction of Tip Vortex: Effect of Numerical Schemes
,”
ASME
Paper No. GT2013-94660.
30.
Su
,
X.
,
Sasaki
,
D.
, and
Nakahashi
,
K.
,
2013
, “
On the Efficient Application of Weighted Essentially Nonoscillatory Scheme
,”
Int. J. Numer. Methods Fluids
,
71
(
2
), pp.
185
207
.
31.
Wang
,
Z.-N.
, and
Yuan
,
X.
,
2013
, “
Unsteady Mechanisms of Compressor Corner Separation Over a Range of Incidences Based on Hybrid LES/RANS
,”
ASME
Paper No. GT2013-95300.
32.
Su
,
X.
, and
Yuan
,
X.
,
2015
, “
DDES Simulation of Turbine Blade at High Subsonic Outlet Mach Number
,”
Twelfth International Conference on Fluid Dynamics
, Sendai, Japan, Oct. 27–29, Paper No. GS1-2.
33.
Lin
,
D.
,
Yuan
,
X.
, and
Su
,
X.
,
2017
, “
Local Entropy Generation in Compressible Flow Through a High Pressure Turbine With Delayed Detached Eddy Simulation
,”
Entropy
,
19
(
1
), p.
29
.
34.
Cicatelli
,
G.
, and
Sieverding
,
C.
,
1996
, “
A Review of the Research on Unsteady Turbine Blade Wake Characteristics
,” 85th Symposium on Loss mechanisms and Unsteady Flows in Turbomachines, Derby, UK, May 8–12, Paper No. AGARD CP-571.
35.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME
Paper No. 93-GT-435.
36.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
37.
Yapici
,
H.
,
Kayatas
,
N.
,
Kahraman
,
N.
, and
Bastürk
,
G.
,
2005
, “
Numerical Study on Local Entropy Generation in Compressible Flow Through a Suddenly Expanding Pipe
,”
Entropy
,
7
(
1
), pp.
38
67
.
38.
Ko
,
T.
, and
Ting
,
K.
,
2006
, “
Entropy Generation and Optimal Analysis for Laminar Forced Convection in Curved Rectangular Ducts: A Numerical Study
,”
Int. J. Therm. Sci.
,
45
(
2
), pp.
138
150
.
39.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmospheric Turbulence and Radio Wave Propagation
, Elsevier, Amsterdam, The Netherlands, pp.
166
178
.
40.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures—Part I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
41.
Ma
,
X.
, and
Karniadakis
,
G.
,
2002
, “
A Low-Dimensional Model for Simulating Three-Dimensional Cylinder Flow
,”
J. Fluid Mech.
,
458
, pp.
181
190
.
42.
Caver
,
D.
, and
Meyer
,
K.
,
2012
, “
Les of Turbulent Jet in Cross Flow: Part 2: POD Analysis and Identification of Coherent Structures
,”
Int. J. Heat Fluid Flow
,
36
, pp.
35
46
.
43.
Holmes
,
P.
,
Lumley
,
J. L.
,
Berkooz
,
G.
, and
Rowley
,
C. W.
,
2012
, “
Proper Orthogonal Decomposition
,”
Cambridge Monographs on Mechanics
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
, pp.
68
105
.
44.
Liu
,
K.
, and
Haworth
,
D. C.
,
2011
, “
Development and Assessment of POD for Analysis of Turbulent Flow in Piston Engines
,” 85th Symposium on Loss mechanisms and Unsteady Flows in Turbomachines, Derby, UK, May 8–12,
SAE
Paper No. 2011-01-0830.
You do not currently have access to this content.