In the application of film-riding sealing technology, there are various groove features that can be used to induce hydrodynamic lift. However, there is little guidance in selecting the relative parameter settings in order to maximize hydrodynamic load and fluid stiffness. In this study, two groove types are investigated—Rayleigh step and inclined groove. The study uses a design of experiments approach and a Reynolds equation solver to explore the design space. Key parameters have been identified that can be used to optimize a seal design. The results indicate that the relationship between parameters is not a simple linear relationship. It was also found that higher pressure drops hinder the hydrodynamic load and stiffness of the seal suggesting an advantage for using hydrostatic load support in such conditions.

References

1.
Messenger
,
A.
,
Williams
,
R.
,
Ingram
,
G.
,
Hogg
,
S.
,
Tibos
,
S.
, and
Seaton
,
J.
,
2015
, “
A Dynamic Clearance Seal for Steam Turbine Application
,”
ASME
Paper No. GT2015-43471.
2.
Munson
,
J.
,
1993
, “
Testing of a High Performance Compressor Discharge Seal
,”
AIAA
Paper No. 931997.
3.
Berard
,
G.
, and
Zheng
,
X.
,
2008
, “
Development of Non-Contacting, Low-Leakage, Large-Diameter Air Seal
,”
AIAA
Paper No. 2008-4507.
4.
Turnquist
,
N. A.
,
Tseng
,
T. W.
,
McNickle
,
A. D.
,
Athavale
,
M.
, and
Steinetz
,
B. M.
,
1999
, “
Analysis and Full Scale Testing of an Aspirating Face Seal With Improved Flow Isolation
,”
AIAA
Paper No. 1998-3285.
5.
Munson
,
J.
,
Grant
,
D.
, and
Agrawal
,
G.
,
2002
, “
Foil Film Riding Face Seal Proof-of-Concept Testing
,”
AIAA
Paper No. 2002-3791.
6.
Gardner
,
J.
,
1999
, “
Development of a High Speed, High Temperature Compressor Discharge Seal
,”
AIAA
Paper No. 1999-2684.
7.
Menendez
,
R.
, and
Cunningham
,
M.
,
1999
, “
Development of Liftoff Seal Technology for Air-Oil Axial Sealing Applications
,”
AIAA
Paper No. 1999-2822.
8.
San Andres
,
L.
, and
Anderson
,
A.
,
2014
, “
An All-Metal Compliant Seal Versus a Labyrinth Seal: A Comparison of Gas Leakage at High Temperatures
,”
ASME J. Eng. Gas Turbines Power.
,
137
(
5
), p.
052504
.
9.
Justak
,
J.
, and
Crudgington
,
P.
,
2006
, “
Evaluation of a Film Riding Hybrid Seal
,”
AIAA
Paper No. 2006-4932.
10.
Grondahl
,
C. M.
, and
Dudley
,
J. C.
,
2010
, “
Film-Riding Leaf Seals for Improved Shaft Sealing
,”
ASME
Paper No. GT2010-23629.
11.
Kirk
,
T.
,
Bowsher
,
A.
,
Crudgington
,
P.
,
Pawlak
,
A.
,
Grondahl
,
C. M.
, and
Dudley
,
J.
,
2016
, “
Film Riding Pressure Activated Leaf Seal Proof of Concept
,”
AIAA
Paper No. 2016-4920.
12.
Grondahl
,
C. M.
,
2009
, “
Pressure-Actuated Leaf Seal Feasibility Study and Demonstration
,”
AIAA
Paper No. 2009-5167.
13.
DiRusso
,
E.
,
1982
, “
Film Thickness Measurements for Spiral Groove and Rayleigh Step Lift Pad Self-Acting Face Seals
,”
NASA Technical Paper
, Report No. 2058.
14.
Tournerie
,
B.
,
Huitric
,
J.
,
Bonneau
,
D.
, and
Frene
,
J.
,
1994
, “
Optimisation and Performance Prediction of Grooved Face Seals for Gases and Liquids
,”
14th International Conference on Fluid Sealing
, Florence Italy, Apr. 6–8, pp.
351
365
.
15.
Cheng
,
H. S.
,
Chow
,
C. Y.
, and
Wilcock
,
D. F.
,
1968
, “
Behavior of Hydrostatic and Hydrodynamic Noncontacting Face Seals
,”
J. Lubr. Technol.
,
90
(
2
), pp.
510
519
.
16.
Tibos
,
S. M.
,
Teixeira
,
J. A.
, and
Georgakis
,
C.
,
2017
, “
Investigation of Effective Groove Types for a Film-Riding Seal
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072503
.
17.
Pekris
,
M. J.
,
Franceschini
,
G.
, and
Gillespie
,
D. R. H.
,
2011
, “
Effect of Geometric Changes in an Idealised Contacting Brush Seal Bristle Pack on Typical Key Performance Measures
,”
ASME
Paper No. GT2011-46492.
18.
Untaroiu
,
A.
,
Liu
,
C.
,
Migliorini
,
P. J.
,
Wood
,
H. G.
, and
Untaroiu
,
C. D.
,
2014
, “
Hole-Pattern Seals Performance Evaluation Using Computational Fluid Dynamics and Design of Experiment Techniques
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
102501
.
19.
Morgan
,
N. R.
,
Untaroiu
,
A.
,
Migliorini
,
P. J.
, and
Wood
,
H. G.
,
2014
, “
Design of Experiments to Investigate Geometric Effects on Fluid Leakage Rate in a Balance Drum Seal
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032501
.
20.
Lebeck
,
A. O.
,
1991
,
Principles and Design of Mechanical Face Seals
,
Wiley
,
Hoboken, NJ
, p.
764
.
21.
Galimutti
,
P.
,
Sawicki
,
J.
, and
Fleming
,
D.
,
2009
, “
Analysis of Finger Seal Lift Pads
,”
ASME
Paper No. GT2009-59842.
22.
Temis
,
J. M.
,
Selivanov
,
A. V.
, and
Dzeva
, I
. J.
,
2013
, “
Finger Seal Design Based on Fluid–Solid Interaction Model
,”
ASME
Paper No. GT2013-95701.
23.
Yue
,
G.
,
Zheng
,
Q.
, and
Zhu
,
R.
,
2008
, “
Numerical Simulation of a Padded Finger Seal
,”
ASME
Paper No. GT2008-50997.
24.
Szeri
,
A. Z.
,
1980
,
Tribology, Friction, Lubrication, and Wear
,
McGraw-Hill
,
New York
.
25.
Proctor
,
M.
, and
Delgado
,
I.
,
2008
, “
Preliminary Test Results of a Non-Contacting Finger Seal on a Herringbone-Grooved Rotor
,”
AIAA
Paper No. 2008-4506.
26.
Minitab
,
2010
, “
Minitab 17 Statistical Software (2010)
,” Minitab, State College, PA.
27.
Munson
,
J.
,
Grant
,
D.
, and
Agrawal
,
G.
,
2001
, “
Foil Face Seal Development
,”
AIAA
Paper No. 2001-3483.
You do not currently have access to this content.