A novel parallelized, automated, and predictive imprint cooling model (PAPRICO) was developed for modeling of combustor liners using Reynolds-averaged Navier–Stokes (RANS). The methodology involves removing the film and effusion cooling jet geometry from the liner while retaining the cooling hole imprints on the liner. The PAPRICO can operate under two modalities, viz., two-sided and one-sided. For the two-sided PAPRICO model, the imprints are kept on the plenum and combustor sides of the liner. For the one-sided PAPRICO model, the imprints are retained only on the combustor side of the liner and there is no need for a plenum. The PAPRICO model neither needs a priori knowledge of the cooling flow rates through various combustor liner regions nor specific mesh partitioning. The imprint mass flow rate, momentum, enthalpy, turbulent kinetic energy, and eddy dissipation rate are included in the governing equations as volumetric source terms in cells adjacent to the liner on the combustor side. Additionally, the two-sided PAPRICO model includes corresponding volumetric sinks in cells adjacent to the liner on the plenum side. A referee combustor liner was simulated using PAPRICO under nonreacting flow conditions. The PAPRICO results were compared against predictions of nonreacting flow results of a resolved liner geometry, against a combustor liner with prescribed mass and enthalpy source terms (simplified liner) and against measurements. The results clearly conclude that PAPRICO can qualitatively and quantitatively emulate the local turbulent flow field with a reduced mesh size. The simplified liner fails to emulate the local turbulent flow field.

References

1.
Andreini
,
A.
,
Bonini
,
A.
,
Caciolli
,
G.
,
Facchini
,
B.
, and
Taddei
,
S.
,
2011
, “
Numerical Study of Aerodynamic Losses of Effusion Cooling Holes in Aero-Engine Combustor Liners
,”
ASME J. Eng. Gas Turbines Power
,
133
(2), p.
0219101
.
2.
Menon
,
S.
, and
Patel
,
N.
,
2006
, “
Subgrid Modeling for Simulation of Spray Combustion in Large-Scale Combustors
,”
AIAA J.
,
44
(
4
), pp.
709
723
.
3.
Drennan
,
S.
, and
Kumar
,
G.
,
2014
, “
Demonstration of an Automatic Meshing Approach for Simulation of a Liquid Fueled Gas Turbine With Detailed Chemistry
,”
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
AIAA
Paper No. 2014-3628.
4.
Briones
,
A. M.
,
Sekar
,
B.
,
Blunck
,
D. L.
,
Erdmann
,
T. J.
, and
Shouse
,
D.
,
2015
, “
Reacting Flows in Ultra-Compact Combustors With Combined-Diffuser-Flameholder
,”
J. Propul. Power
,
31
(
1
), pp.
238
252
.
5.
Briones
,
A. M.
,
Thornburg
,
H.
,
Sekar
,
B.
,
Neuroth
,
C.
, and
Shouse
,
D.
,
2013
, “
Numerical-Experimental Research of Ultra Compact Combustors Containing Film and Effusion Cooling
,”
51st AIAA Aerospace Science Meeting, Grapevine, TX
,
AIAA
Paper No. 2013-1045.
6.
Burdet
,
A.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
,
2007
, “
Modeling of Film Cooling—Part II: Model for Use in Three-Dimensional Computational Fluid Dynamics
,”
ASME J. Turbomach.
,
129
(
2
), pp.
221
231
.
7.
auf dem Kampe
,
T.
, and
Volker
,
S.
,
2012
, “
A Model for Cylindrical Hole Film Cooling—Part II: Model, Formulation, Implementation and Results
,”
ASME J. Turbomach.
,
134
(
6
), p.
061011
.
8.
Mendez
,
S.
, and
Nicoud
,
2008
, “
Adiabatic Homogeneous Model for Flow Around a Multiperforated Plate
,”
AIAA J.
,
46
(
10
), pp.
2623
2633
.
9.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Colantuoni
,
S.
, and
Turrini
,
F.
,
2014
, “
Local Source CFD Modeling of Effusion Cooling Holes: Validation and Application to an Actual Combustor Test Case
,”
ASME J. Eng. Gas Turbines Power
,
136
(1), p.
011506-1
.
10.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Colantuoni
,
S.
, and
Turrini
,
F.
,
2013
, “
Local Source CFD Modeling of Effusion Cooling Holes: Validation and Application to an Actual Combustor Test Case
,”
ASME
Paper No. GT2013-94874.
11.
Tartinville
,
B.
, and
Hirsch
,
Ch.
,
2008
, “
Modeling of Film Cooling for Turbine Blade Design
,”
ASME
Paper No. GT2008-50316.
12.
Rida
,
S.
,
Reynolds
,
R.
,
Chakravorty
,
S.
, and
Gupta
,
K.
,
2012
, “
Imprinted Effusion Modeling and Dynamic CD Calculation in Gas Turbine Combustors
,”
ASME
Paper No. GT2012-68804.
13.
Ansys
,
2015
, “
Ansys Fluent 16.1, Theory Guide
,” Ansys, Inc., Canonsburg, PA.
14.
Barth
,
T. J.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. 89-0366.
15.
Anderson
,
W.
, and
Bonhus
,
D. L.
,
1994
, “
An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids
,”
Comput. Fluids
,
23
(
1
), pp.
1
21
.
16.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill
,
New York
.
17.
Hearn
,
D.
, and
Baker
,
M. P.
,
1997
,
Computer Graphics
, Version C, 2nd ed.,
Prentice-Hall
,
Upper Saddle River, NJ
.
18.
Briones
,
A. M.
,
Rankin
,
B. A.
,
Stouffer
,
S. D.
,
Erdmann
,
T. J.
, and
Burrus
,
D. L.
, “
Parallelized, Automated, Predictive, Imprint Cooling Model for Combustor Liners
,”
ASME
Paper No. GT2016-56187.
19.
Idelchik
,
I. E.
,
1986
,
Handbook of Hydraulic Resistance
,
Hemisphere
,
New York
.
You do not currently have access to this content.