A step-by-step technique has been implemented in the analytical study of heat transfer and pressure gradient characteristics of refrigerants R-410A, R-407C, R-22, and R-134a used as cooling media in the condenser of a steam power plant. Refrigerants are optimized to replace water/air as coolant in the condenser of a steam power plant. Refrigerants have much lower temperatures and much higher heat transfer rates than water or air. The thermal resistances that affect heat transfer characteristics and surface condenser performance are included. The effect of inlet refrigerant temperature and mass flow rate are reported for the four refrigerants. Calculations are performed at two inlet refrigerant temperatures −21 °C and −30 °C and mass flow rate ranging from 92.905 to 132.905 kg/s. The results revealed that the overall heat transfer coefficient, heat transfer rate, and condensation rate increased with refrigerant mass flow rate, with higher values at lower inlet refrigerant temperatures. For a given refrigerant mass flow rate and inlet temperature, the analytical study indicated that R-410A has higher values of overall heat transfer coefficient, heat transfer rate and condensation rate than R-407C, R-22, and R-314a, respectively. Moreover, it is found that R-410A, at −30 °C and 132.905 kg/s, is superior in condensing all steam entering the condenser than the other refrigerants; this corresponds to higher exergy efficiency. The condenser pressure was observed to be slightly higher for R-410A than the other refrigerants.

References

1.
Haseli
,
Y.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2008
, “
Optimum Temperatures in a Shell and Tube Condenser With Respect to Exergy
,”
Int. J. Heat Mass Transfer
,
51
(9–10)
, pp.
2462
2470
.10.1016/j.ijheatmasstransfer.2007.08.006
2.
Anozie
,
A. N.
, and
Odejobi
,
O. J.
,
2011
, “
The Search for Optimum Condenser Cooling Water Flow Rate in a Thermal Power Plant
,”
Appl. Therm. Eng.
,
31
(17–18)
, pp.
4083
4090
.10.1016/j.applthermaleng.2011.08.014
3.
Zhang
,
C.
, and
Bokil
,
A.
,
1997
, “
Aquasi-Three-Dimensional Approach to Simulate the Two Phase Fluid Flow and Heat Transfer in Condensers
,”
Int. J. Heat Mass Transfer
,
40
(
15
), pp.
3537
3546
.10.1016/S0017-9310(97)00014-8
4.
Philpott
,
C.
, and
Deans
,
J.
,
2004
, “
The Enhancement of Steam Condensation Heat Transfer in a Horizontal Shell and Tube Condenser by Addition of Ammonia
,”
Int. J. Heat Mass Transfer
,
47
(17–18)
, pp.
3683
3693
.10.1016/j.ijheatmasstransfer.2004.04.008
5.
Vosough
,
A.
,
Falahat
,
A.
,
Vosough
,
S.
,
Esfehani
,
H. N.
,
Behjat
,
A.
, and
Rad
,
R. N.
,
2011
, “
Improvement Power Plant Efficiency With Condenser Pressure
,”
Int. J. Multidiscip. Sci. Eng.
,
2
(
3
), pp.
38
43
.
6.
Zeng
,
H.
,
Meng
,
J.
, and
Li
,
Z.
,
2012
, “
Numerical Study of a Power Plant Condenser Tube Arrangement
,”
Appl. Therm. Eng.
,
40
, pp.
294
303
.10.1016/j.applthermaleng.2012.02.028
7.
Heat Exchange Institute,
2006
,
Standards for Steam Surface Condensers
, 10th ed.,
Heat Exchange Institute Inc.
,
Cleveland, OH
.
8.
Pearce
,
R. E.
,
2005
, “
A Computational Model of Steam Surface Condenser Performance
,” Ph.D. thesis, Faculty of the Graduate School, University of Missouri, Kansas City, MO.
9.
Davidson
,
B. J.
, and
Rowe
,
M.
,
1982
, “
Simulation of Power Plant Condenser Performance by Computational Methods: An Overview
,”
Power Condenser Heat Transfer Technology: Computer Modeling/Design/Fouling
, P. J. Marto and R. H. Nunn, eds.,
Hemisphere
,
Washington, DC
, pp.
17
49
.
10.
Hu
,
H. G.
, and
Zhang
,
C.
,
2008
, “
A New Inundation Correlation for the Prediction of Heat Transfer in Steam Condensers
,”
Numer. Heat Transfer, Part A
,
54
(1), pp.
34
46
.10.1080/10407780802024963
11.
Rashad
,
A.
, and
El-Maihy
,
A.
,
2009
, “
Energy and Energy Analysis of a Steam Power Plant in Egypt
,”
13th International Conference on Aerospace Science and Aviation Technology (ASAT-13)
, Cairo, Egypt, May 26–28, Paper No. ASAT-13-TH-02.
12.
Grzebielec
,
A.
, and
Rusowicz
,
A.
,
2011
, “
Thermal Resistance of Steam Condensation in Horizontal Tube Bundles
,”
J. Power Tech.
,
91
(
1
), pp.
41
48
.
13.
Prieto
,
M. M.
,
Suarez
,
I. M.
, and
Montanes
,
E.
,
2003
, “
Analysis of the Thermal Performance of a Church Window Steam Condenser for Different Operational Conditions Using Three Models
,”
Appl. Therm. Eng.
,
23
(2)
, pp.
163
178
.10.1016/S1359-4311(02)00159-X
14.
Maulbetsch
,
J. S.
,
2002
, “
Comparison of Alternate Cooling Technologies for California Power Plants: Economic, Environment and Other Tradeoffs
,”
Electric Power Research Institute and California Energy Commission
, Sacramento, CA, Final Report No. 500-02-079F.
15.
Bonger
,
R.
, and
Chandron
,
R.
,
1995
, “
New Developments in Air-Cooled Steam Condensing
,” Cooling Tower and Advanced Cooling Systems Conference (EPRI TR-104867), St. Petersburg, FL, Aug. 30–Sept. 1, 1994, Electric Power Research Institute, Palo Alto, CA, Paper No. 18.
16.
Kroege
,
D. G.
,
1998
,
Air-Cooled Heat Exchangers and Cooling Towers
,
Begell House
,
New York
.
17.
Balogh
,
A.
, and
Takacs
,
Z.
,
1998
, “
Developing Indirect Dry Cooling Systems for Modern Power Plants
,” http://www.nemesis.at/publication/gpi_98_2/articles/33.html
18.
Maulbetsch
,
J. S.
, and
DiFilippo
,
M. N.
,
2001
, “
Spray Cooling Enhancement of Air-Cooled Condensers
,”
XIIth International Conference on Cooling Towers
, Sydney, Australia, Nov. 12–15.
19.
Hutton
,
D.
,
1999
, “
Improved Power Plant Performance With Evaporative Steam Condensing
,” Cooling Technology Institute, Houston, TX, CTI Bulletin PRM No. 103(08), Technical Paper No. TP99-08.
20.
Hegazy
,
A. S.
,
2008
, “
Use of Cooling Thermal Storage as a Heat Sink for Steam Power Plant
,”
JSME Journal Therm. Sci. Technol.
,
3
(
2
), pp.
330
341
.10.1299/jtst.3.330
21.
Allemann
,
R. T.
,
Johnson
,
B. M.
, and
Werry
,
E. V.
,
1987
, “
Wet-Dry Cooling Demonstration: A Transfer of Technology
,” Electric Power Research Institute, Palo Alto, CA, Report No. CS-5016.
22.
Hegazy
,
A. S.
,
2009
, “
Improving Performance of Refrigerant Cooled Steam Power Plant Using Cooling Thermal Storage
,”
ASME J. Gas Turbines Power
,
131
(
5
), p.
053002
.10.1115/1.3078385
23.
Lee
,
H. S.
,
Yoon
,
J. I.
,
Kim
,
J. D.
, and
Bansal
,
P. K.
,
2006
, “
Condensing Heat Transfer and Pressure Drop Characteristics of Hydrocarbon Refrigerants
,”
Int. J. Heat Mass Transfer
,
49
(11–12)
, pp.
1922
1927
.10.1016/j.ijheatmasstransfer.2005.11.008
24.
Kurylo
,
M. J.
,
1990
, “
The Chemistry of Stratospheric Ozone: Its Response to Natural and Anthropogenic Influences
,”
Int. J. Refrig.
,
13
(2)
, pp.
62
72
.10.1016/0140-7007(90)90003-F
25.
Refrigeration Service Engineers Society,
2001
,
Refrigerant 410A
,
Refrigeration Service Engineers Society
, Rolling Meadows, IL, 620-108 Section 3.
26.
Lee
,
H. S.
,
Yoon
,
J. I.
,
Kim
,
J. D.
, and
Bansal
,
P. K.
,
2005
, “
Evaporating Heat Transfer and Pressure Drop of Hydrocarbon Refrigerants in 9.52 and 12.70 mm Smooth Tube
,”
Int. J. Heat Mass Transfer
,
48
(12)
, pp.
2351
2359
.10.1016/j.ijheatmasstransfer.2005.01.012
27.
Ebisu
,
T.
, and
Torikoshi
,
K.
,
1998
, “
Heat Transfer Characteristics and Correlations for R-410A Flowing Inside a Horizontal Smooth Tube
,” ASHRAE Transactions,
104
(2), pp.
556
561
.
28.
Wang
,
C. C.
,
Chiang
,
S. K.
,
Chang
,
Y. J.
, and
Chung
,
T. W.
,
2001
, “
Two Phase Flow Resistance of Refrigerants R-22, R-410A, and R407C in Small Diameter Tubes
,”
Inst. Chem. Eng., Part A, Trans. IChemE
,
79
(5)
, pp.
553
560
.10.1205/02638760152424325
29.
Christoffersen
,
B. R.
,
Chato
,
J. C.
,
Wattelet
,
J. P.
, and
de Souza
,
A. L.
,
1993
, “
Heat Transfer and Flow Characteristics of R-22, R-32/R-125 and R-134a in Smooth and Micro-Fin Tubes
,” Air Conditioning and Refrigeration Center (ACRC), University of Illinois, Urbana, IL, ACRC Project 1, Report No. 742.
30.
Seo
,
K.
,
Kim
,
Y.
,
Lee
,
K. J.
, and
Park
,
Y. C.
,
2001
, “
An Experimental Study on Convective Boiling of R-22 and R-410A in Horizontal Smooth and Micro-Fin Tubes
,”
KSME Int. J.
15
(
8
), pp.
1156
1164
.
31.
Kim
,
M. H.
,
Shin
,
J. S.
, and
Lim
,
B. H.
,
2002
, “
Evaporating Heat Transfer of R22 and R410A in 9.52 mm Smooth and Micro Fin Tubes
,”
9th International Refrigeration and Air Conditioning Conference
, Purdue University, West Lafayette, IN, July 16–19, Paper No. 565.
32.
Fatouh
,
M.
,
Helali
,
A. B.
,
Hassan
,
M. A. M.
, and
Abdala
,
A.
,
2011
, “
Heat Transfer Characteristics of R410A During Its Evaporation Inside Horizontal Tube
,”
Int. J. Energy Environ. (IJEE)
,
2
(
4
), pp.
701
716
.
33.
Cavallini
,
A.
,
Del
,
D. C.
,
Doretti
,
L.
,
Rossetto
,
L.
, and
Longo
,
G. A.
,
2000
, “
Condensation Heat Transfer of New Refrigerants: Advantages of High Pressure Fluids
,”
8th International Refrigeration and Air Conditioning Conference
, Purdue University, West Lafayette, IN, July 25–28, Paper No. 480.
34.
Cavallini
,
A.
,
Censi
,
G.
,
Del
,
D. C.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
,
2001
, “
Experimental Investigation on Condensation Heat Transfer and Pressure Drop of New HFC Refrigerants (R134a, R125, R32, R410A, R236ea) in a Horizontal Smooth Tube
,”
Int. J. Refrig.
,
24
(1)
, pp.
73
87
.10.1016/S0140-7007(00)00070-0
35.
Cavallini
,
A.
,
Censi
,
G.
,
Del
,
D. C.
,
Doretti
,
L.
,
Rossetto
,
L.
, and
Longo
,
G. A.
,
2002
, “
Heat Transfer Coefficients of HFC Refrigerants During Condensation at High Temperature Inside an Enhanced Tube
,”
9th International Refrigeration and Air Conditioning Conference
, Purdue University, West Lafayette, IN, July 16–19, Paper No. 563.
36.
Cavallini
,
A.
,
Del
,
D. C.
,
Doretti Matkovic
,
L.
,
Rossetto
,
M. L.
, and
Zilio
,
C.
,
2005
, “
Two-Phase Frictional Pressure Gradient of R236ea, R134a and R410A Inside Multi-Port Mini-Channels
,”
Exp. Therm. Fluid Sci.
,
29
(7)
, pp.
861
870
.10.1016/j.expthermflusci.2005.03.012
37.
Kim
,
Y.
,
Seo
,
K.
, and
Chung
,
J. T.
,
2002
, “
Evaporation Heat Transfer Characteristics of R-410A in 7 and 9.52 mm Smooth/Micro-Fin Tubes
,”
Int. J. Refrig.
,
25
(6)
, pp.
716
730
.10.1016/S0140-7007(01)00070-6
38.
Yun
,
R.
,
Heo
,
J. H.
,
Kim
,
Y. C.
, and
Chung
,
J. T.
,
2004
, “
Convective Boiling Heat Transfer Characteristics of R410A in Microchannels
,”
10th International Refrigeration and Air Conditioning Conference
, Purdue University, West Lafayette, IN, July 12–15, Paper No. 655.
39.
Kaew-On
,
J.
, and
Wongwises
,
S.
,
2009
, “
Experimental Investigation of Evaporation Heat Transfer Coefficient and Pressure Drop of R-410A in a Multiport Mini-Channel
,”
Int. J. Refrig.
,
32
(1)
, pp.
124
137
.10.1016/j.ijrefrig.2008.06.010
40.
Kim
,
N. H.
,
Lee
,
E. J.
, and
Byun
,
H. E.
,
2013
, “
Evaporation Heat Transfer and Pressure Drop of R-410A in Flattened Smooth Tubes Having Different Aspect Ratios
,”
Int. J. Refrig.
,
36
(2)
, pp.
363
374
.10.1016/j.ijrefrig.2012.10.001
41.
Choi
,
K. I.
,
Pamitran
,
A. S.
,
Oh
,
C. Y.
, and
Oh
,
J. T.
,
2008
, “
Two-Phase Pressure Drop of R-410A in Horizontal Smooth Minichannels
,”
Int. J. Refrig.
,
31
(1)
, pp.
119
129
.10.1016/j.ijrefrig.2007.06.006
42.
Longo
,
G. A.
, and
Gasparella
,
A.
,
2006
, “
Refrigerant R410A Vaporization Inside a Small Brazed Plate Heat Exchanger
,”
11th International Refrigeration and Air Conditioning Conference
, Purdue University, West Lafayette, IN, July 17–20, Paper No. 805.
43.
Longo
,
G. A.
, and
Gasparella
,
A.
,
2007
, “
Heat Transfer and Pressure Drop During HFC Refrigerant Vaporization Inside a Brazed Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
50
(25–26)
, pp.
5194
5203
.10.1016/j.ijheatmasstransfer.2007.07.001
44.
Ramon
,
I. S.
, and
Gonalez
,
M. P.
,
2001
, “
Numerical Study of the Performance of a Church Window Tube Bundle Condenser
,”
Int. J. Therm. Sci.
,
40
(2)
, pp.
195
204
.10.1016/S1290-0729(00)01208-4
45.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
2007
,
Fundamentals of Engineering Thermodynamics
, 6th ed.,
Wiley
, New York.
46.
Hu
,
H. G.
, and
Zhang
,
C.
,
2007
, “
A Modified k-ε Turbulence Model for the Simulation of Two Phase Flow and Heat Transfer in Condensers
,”
Int. J. Heat Mass Transfer
,
50
(9–10)
, pp.
1641
1648
.10.1016/j.ijheatmasstransfer.2006.10.031
47.
Al-Sanea
,
S. A.
,
Rhodes
,
N.
, and
Wilkinson
,
T. S.
,
1985
, “
Mathematical Modeling of Two-Phase Condenser Flows
,”
2nd International Conference on Multi-Phase Flow
, London, June 19–21, pp.
169
182
.
48.
Berman
,
L. D.
, and
Fuks
,
S. N.
,
1958
, “
Mass Transfer in Condensers With Horizontal Tube When the Steam Contains Air
,”
Teploenergytika
,
5
(
8
), pp.
66
74
.
49.
Thom
,
J. R.
,
2007
,
“Condensation on External Surfaces
,” Engineering Data Book III,
Wolverine Tube Inc., Decatur, AL, Chap. 7
.
50.
Fujii
,
T.
,
1983
, “
Condensation in Tube Banks
,”
Condensers: Theory and Practice
(I. Chem. E. Symposium Series, Vol.
75
),
Pergamon
,
London
, pp.
3
22
.
51.
Kothandaraman
,
C. P.
,
2006
, “
Fundamentals of Heat and Mass Transfer
,” New Age International Daryaganj, Delhi, India.
52.
Bush
,
A. W.
,
Marshall
,
G. S.
, and
Wilkinson
,
T. S.
,
1990
, “
The Prediction of Steam Condensation Using a Three Component Solution Algorithm
,”
2nd International Symposium on Condensers and Condensation
, University of Bath, Bath, UK, Mar. 28–30, pp.
223
234
.
You do not currently have access to this content.