This paper contains a numerical examination concerning the ignition behavior of a spray nozzle mounted in a rectangular channel under atmospheric conditions, which is run with Jet A-1. On the basis of a comprehensive data set of experimental results, the numerical approach is verified primarily by means of a comparison of the flame growth and position after ignition. In the following, several distinct igniter positions and boundary condition settings are simulated. The conditions that prevail at the location of the ignition are investigated with respect to how they influence the ignition process. Due to changes in the fuel placement and flow field characteristics, which follow from alternating the boundary conditions, such as air and fuel mass flow, ignition is either promoted or impeded. The underlying causes that can lead to a success or failure of the ignition are analyzed. The ignition in the experiment is achieved through a laser-induced breakdown, which is modeled through a turbulent flame speed closure combustion model with an additional spark ignition extension. A comparison with the ignition statistics from the experiment shows that numerical tools can be used to determine preferential boundary conditions and igniter locations to accomplish a successful ignition in multiphase flow configurations.

References

1.
Ahmed
,
S. F.
, and
Mastorakos
,
E.
,
2006
, “
Spark Ignition of Lifted Turbulent Jet Flames
,”
Combust. Flame
,
146
, pp.
215
231
.10.1016/j.combustflame.2006.03.007
2.
Ahmed
,
S. F.
,
Balachandran
,
R.
,
Machione
,
T.
, and
Mastorakos
,
E.
,
2007
, “
Spark Ignition of Turbulent Nonpremixed Bluff-Body Flames
,”
Combust. Flame
,
151
, pp.
366
385
.10.1016/j.combustflame.2007.06.012
3.
Ahmed
,
S. F.
,
Bahane Ledezma
,
I. A.
, and
Mastorakos
,
E.
,
2009
, “
Spark Ignition in a Turbulent Shearless Fuel-Air Mixing Layer: Average Flame Growth Rates
,”
Proceedings of the 47th AIAA Aerospace Sciences Meeting
,
Orlando
,
FL
, January 5–8, Paper No. AIAA-2009-238.
4.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
, pp.
57
97
. 10.1016/j.pecs.2008.07.002
5.
Lacaze
,
G.
,
Richardson
,
E.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Spark Ignition in a Turbulent Methane Jet
,”
Combust. Flame
,
156
, pp.
1993
2009
.10.1016/j.combustflame.2009.05.006
6.
Boyde
,
J. M.
,
Van Hove
,
M.
,
Di Domenico
,
M.
, and
Aigner
,
M.
,
2011
, “
The Numerical Generation of an Ignition Map by Means of a Turbulent Flame Speed Closure Approach for the Configuration of a Jet Flame
,”
Proceedings of the 20th ISABE Conference
,
Gothenborg
,
Sweden
, September 12–16, Paper No. ISABE-2011-1135.
7.
Boyde
,
J. M.
,
Le Clercq
,
P.
,
Di Domenico
,
M.
,
Mosbach
,
T.
,
Gebel
,
G.
,
Rachner
,
M.
, and
Aigner
,
M.
,
2011
, “
Ignition and Flame Propagation Along Planar Monodisperse Droplet Streams
,”
Proceedings of the 49th AIAA Aerospace Sciences Meeting
,
2011
,
Orlando
,
FL
,
January 4–7, Paper No. AIAA-2011-102
.
8.
Boyde
,
J. M.
,
Le Clercq
,
P.
,
Di Domenico
,
M.
,
Rachner
,
M.
,
Gebel
,
G. C.
,
Mosbach
,
T.
, and
Aigner
,
M.
,
2011
, “
Validation of an Ignition and Flame Propagation Model for Multiphase Flows
,”
Proceedings of the ASME Turbo Expo
,
ASME
Paper No. GT2011-45104. 10.1115/GT2011-45104
9.
Boyde
,
J. M.
,
Le Clercq
,
P.
,
Gebel
,
G. C.
,
Mosbach
,
T.
, and
Aigner
,
M.
,
2012
, “
A Numerical Investigation of the Ignition Characteristics of a Spray Flame Under Atmospheric Conditions
,”
Proceedings of the 50th AIAA Aerospace Sciences Meeting
,
Nashville
,
TN
, January 9–12, Paper No. AIAA-2012-0174.
10.
Mosbach
,
T.
,
Gebel
,
G. C.
, and
Meier
,
W.
,
2009
, “
Report on the Experiments at the Lab-Scale Combustor
,” Toward Innovative Methods for Combustion Prediction in Aero-Engines (TIMECOP-AE).
11.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2008
,
Numerische Strömungsmechanik
,
Springer-Verlag
,
New York
.
12.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University
,
Cambridge, England
.
13.
Saad
,
Y.
,
2003
,
Iterative Methods for Sparse Linear Systems
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
14.
Zimont
,
V. L.
,
1979
, “
Theory of Turbulent Combustion of Homogeneous Fuel Mixtures at High Reynolds Numbers
,”
Combust., Explos. Shock Waves
,
15/3
, pp.
305
311
.10.1007/BF00785062
15.
Polifke
,
W.
,
Flohr
,
P.
, and
Brandt
,
M.
,
2002
, “
Modeling of Inhomogeneously Premixed Combustion With an Extended TFC Model
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
58
65
.10.1115/1.1394964
16.
Wood
,
J. P.
, and
Moss
,
J. B.
,
2003
, “
Modelling Partially Premixed Combustion Using a Turbulent Burning Velocity-Based Closure
,”
Proceedings of the European Combustion Meeting
,
Orléans
,
France
, October 25–28.
17.
Durand
,
L.
,
2007
, “
Development, Implementation and Validation of LES Models for Inhomogeneously Premixed Turbulent Combustion
,”
Ph.D. thesis
,
University of Munich
,
Munich, Germany
.
18.
Schmid
,
H.
,
Habisreuther
,
P.
, and
Leuckel
,
W.
,
1998
, “
A Model for Calculating Heat Release in Premixed Turbulent Flames
,”
Combust. Flame
,
113
, pp.
79
91
.10.1016/S0010-2180(97)00193-4
19.
Boyde
,
J. M.
,
Fiolitakis
,
A.
,
Di Domenico
,
M.
, and
Aigner
,
M.
,
2011
, “
Correlations for the Laminar Flame Speed, Adiabatic Flame Temperature and Ignition Delay Time for Methane, Ethanol and n-Decane
,”
Proceedings of the 49th AIAA Aerospace Sciences Meeting
,
Orlando
,
FL
, January 4–7, Paper No. AIAA-2011-510.
20.
Le Clercq
,
P.
,
Di Domenico
,
M.
,
Rachner
,
M.
,
Ivanova
,
E.
, and
Aigner
,
M.
,
2010
, “
Impact of Fischer-Tropsch Fuels on Aero-Engine Combustion Performance
,”
Proceedings of the 48th AIAA Aerospace Sciences Meeting
,
Orlando
,
FL
, January 4–7, Paper No. AIAA-2010-613.
21.
Gosman
,
A. D.
, and
Ioannides
,
E.
,
1981
, “
Aspects of Computer Simulation of Liquid-Fuelled Combustors
,”
Proceedings of the 19th AIAA Aerospace Sciences Meeting
, St. Louis, MO, January 12–15, Paper No. AIAA-1981-323.
22.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
, pp.
1605
1618
.10.1016/0017-9310(89)90043-4
23.
Rachner
,
M.
,
1998
, “
Die Stoffeigenschaften von Kerosin Jet A-1
,” DLR-Mitt., Paper No. 98-01.
24.
Gebel
,
G. C.
,
Mosbach
,
T.
,
Meier
,
W.
,
Aigner
,
M.
, and
Le Brun
,
S.
,
2012
, “
An Experimental Investigation of Kerosene Droplet Breakup by Laser-Induced Blast Waves
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2012-68963.
25.
Gebel
,
G. C.
,
Mosbach
,
T.
,
Meier
,
W.
, and
Aigner
,
M.
,
2011
, “
Laser-Induced Ignition of Kerosene in a Model Combustor
,”
Proceedings of the European Combustion Meeting
,
Cardiff
,
Ireland
, June 28–July 7, Paper No. 061.
26.
Bradley
,
D.
,
Sheppard
,
C. G. W.
,
Suardjaja
,
I. M.
, and
Woolley
,
R.
,
2009
, “
Fundamentals of High-Energy Spark Ignition With Lasers
,”
Combust. Flame
,
156
, pp.
55
77
. 10.1016/j.combustflame.2004.04.002
27.
Cato
,
R. J.
,
Gilbert
,
W. H.
, and
Kuchta
,
J. M.
,
1967
, “
Effect of Temperature on Upper Flammability Limits of Hydrocarbon Fuel Vapors in Air
,”
Fire Technol.
,
3
, pp.
14
19
. 10.1007/BF02588577
You do not currently have access to this content.