The statistics of the density-weighted displacement speed of the reaction progress variable c isosurfaces for stratified mixture combustion arising from localized ignition in a turbulent planar coflowing jet have been studied based on 3D Direct Numerical Simulation data where the jet is considered to be fuel-rich and the coflow is taken to be fuel-lean. The resulting flame following successful ignition shows the premixed mode of combustion in fuel-rich and fuel-lean zones although an additional diffusion flame branch was also observed on the stoichiometric mixture isosurface at early times of flame evolution. The flame propagation characteristics have been analyzed in terms of the reaction, normal diffusion and tangential diffusion components of the density-weighted displacement speed for different values of reaction progress variables across the flame brush. It has been found that the reaction, normal diffusion and tangential diffusion components of density-weighted displacement speed, remain the major contributors to the density-weighted displacement speed at all stages of flame evolution as the magnitude of the component which originates due to mixture inhomogeneity remains negligible in comparison to the magnitudes of other components in accordance with previous experimental studies. It has been demonstrated that curvature and tangential strain rate dependences of the reaction progress variable gradient play key roles in determining strain rate dependences of the reaction and normal diffusion components of the density-weighted displacement speed. It has been shown that the interrelation between tangential strain rate and curvature affects the strain rate dependence of tangential diffusion component of the density-weighted displacement speed. The density-weighted displacement speed and curvature are found to be predominantly negatively correlated throughout the flame brush at all stages of the flame evolution. The relative strengths of the tangential strain rate dependence of the reaction, normal diffusion and tangential diffusion components of the density-weighted displacement speed ultimately determine the nature of correlation between the density-weighted displacement speed and the tangential strain rate. The strain rate and curvature dependences of the density-weighted displacement speed in stratified mixtures are found to be qualitatively similar to the statistics previously obtained for turbulent premixed flames.

References

1.
Peters
,
N.
, 2000,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
2.
Bray
,
K.
,
Domingo
,
P.
, and
Vervisch
,
L.
, 2005, “
Role of the Progress Variable in Models for Partially Premixed Turbulent Combustion
,”
Combust. Flame
,
141
, pp.
431
437
.
3.
Echekki
,
T.
, and
Chen
,
J. H.
, 1996, “
Unsteady Strain Rate and Curvature Effects in Turbulent Premixed Methane-Air Flames
,”
Combust. Flame
,
106
, pp.
184
202
.
4.
Chen
,
J. H.
, and
Im
,
H. G.
, 1998, “
Correlation of Flame Speed With Stretch in Turbulent Premixed Methane/Air Flames
,”
Proc. Combust. Inst.
,
27
, pp.
819
826
.
5.
Peters
,
N.
,
Terhoeven
,
P.
,
Chen
,
J. H.
, and
Echekki
,
T.
, 1998, “
Statistics of Flame Displacement Speeds From Computations of 2-D Unsteady Methane-Air Flames
,”
Proc. Combust. Inst.
,
27
, pp.
833
839
.
6.
Hawkes
,
E. R.
, and
Chen
,
J. H.
, 2005, “
Evaluation of Models for Flame Stretch Due to Curvature in the Thin Reaction Zones Regime
,”
Proc. Combust. Inst.
,
30
, pp.
647
655
.
7.
Chakraborty
,
N.
, and
Cant
,
S.
, 2004, “
Unsteady Effects of Strain Rate and Curvature on Turbulent Premixed Flames in an Inflow-Outflow Configuration
,”
Combust. Flame
,
137
, pp.
129
147
.
8.
Chakraborty
,
N.
, and
Cant
,
R. S.
, 2005, “
Effects of Strain Rate and Curvature on Surface Density Function Transport in Turbulent Premixed Flames in the Thin Reaction Zones Regime
,”
Phys. Fluids
,
17
, pp.
105105
.
9.
Chakraborty
,
N.
, and
Cant
,
R. S.
, 2006, “
Influence of Lewis Number on Strain Rate Effects in Turbulent Premixed Flame Propagation in the Thin Reaction Zones Regime
,”
Int. J. Heat Mass Trans.
,
49
, pp.
2158
2174
.
10.
Jenkins
,
K. W.
,
Klein
,
M.
,
Chakraborty
,
N.
, and
Cant
,
R. S.
, 2006, “
Effects of Strain Rate and Curvature on the Propagation of a Spherical Flame Kernel in the Thin Reaction Zones Regime
,”
Combust. Flame
,
145
, pp.
415
434
.
11.
Klein
,
M.
,
Chakraborty
,
N.
,
Jenkins
,
K. W.
, and
Cant
,
R. S.
, 2006, “
Effects of Initial Radius on the Propagation of Spherical Premixed Flame Kernels in Turbulent Environment
,”
Phys. Fluids
,
18
, p.
055102
.
12.
Chakraborty
,
N.
,
Klein
,
M.
, and
Cant
,
R. S.
, 2007, “
Stretch Rate Effects on Displacement Speed in Turbulent Premixed Flame Kernels in the Thin Reaction Zones Regime
,”
Proc. Combust. Inst.
,
31
, pp.
1385
1392
.
13.
Chakraborty
,
N.
, 2007, “
Comparison of Displacement Speed Statistics of Turbulent Premixed Flames in the Regimes Representing Combustion in Corrugated Flamelets and the Thin Reaction Zones
,”
Phys. Fluids
,
19
, p.
105109
.
14.
Defransure
,
F.
,
Renou
,
B.
,
Samson
,
E.
,
Boukhalfa
,
A. M.
, and
Veynante
,
D.
, 2003, “
Experimental and Numerical Studies of the Laminar Flame Speed of Stratified Flames
,” Proceedings of 1st European Combustion Meeting, Orleans, France, 2003.
15.
Samson
,
E.
, 2002, “
Etude Experimentale de la Propagation de Flames en Expansion dans un Milieu a Richesse Stratifiee
,” Ph.D. thesis, CNRS, Rouen, France.
16.
Ray
,
J.
,
Najm
,
H. N.
, and
McCoy
,
R. B.
, 2001, “
Ignition Front Structure in a Methane-Air Jet
,” Proceedings of the 2nd Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, CA, Paper No. 150.
17.
Im
,
H. G.
, and
Chen
,
J. H.
, 2001, “
Effects of Flow Strain on Triple Flame Propagation
,”
Combust. Flame
,
126
, pp.
1384
1392
.
18.
Hilbert
,
R.
, and
Thevenin
,
D.
, 2002, “
DNS of Multi-Brachial Structures With Detailed Chemistry and Transport
,” Proceedings of the 9th International Conference on Numerical Combustion, Sorrento, Italy, Paper No. 064.
19.
Alvani
,
R. E.
, and
Fairweather
,
M.
, 2002, “
Ignition Characteristics of Turbulent Jet Flows
,”
Trans. Ichem E.
,
80
, pp.
917
923
.
20.
Chakraborty
,
N.
,
Mastorakos
,
E.
, and
Cant
,
R. S.
, 2007, “
Effects of Turbulence on Spark Ignition in Inhomogeneous Mixtures: A Direct Numerical Simulation (DNS) Study
,”
Combust. Sci Technol.
,
179
(
1–2
), pp.
293
317
.
21.
Chakraborty
,
N.
, and
Mastorakos
,
E.
, 2006, “
Numerical Investigation of Edge Flame Propagation Characteristics in Turbulent Mixing Layers
,”
Phys. Fluids
,
18
, p.
105103
.
22.
Hesse
,
H.
,
Chakraborty
,
N.
, and
Mastorakos
,
E.
, 2009, “
The Effects of Lewis Number of the Fuel on Displacement Speed of Edge Flames in Igniting Turbulent Mixing Layers
,”
Proc. Combust. Inst.
,
32
, pp.
1435
1443
.
23.
Lacaze
,
G.
,
Richardson
,
E.
, and
Poinsot
,
T.
, 2009, “
Large Eddy Simulation of Spark Ignition in a Turbulent Methane Jet
,”
Combust. Flame
,
156
, pp.
1093
2009
.
24.
Espí
,
C. V.
, and
Liñán
,
A.
, 2001, “
Fast, Non-Diffusive Ignition of a Gaseous Reacting Mixture Subject to a Point Energy Source
,”
Combust. Theory Modell.
,
5
, pp.
485
498
.
25.
Espí
,
C. V.
, and
Liñán
,
A.
, 2002, “
Thermal-Diffusive Ignition and Flame Initiation by a Local Energy Source
,”
Combust. Theory Modell.
,
6
, pp.
297
315
.
26.
Chen
,
J. H.
,
Choudhary
,
A.
,
de Supinski
,
B.
,
DeVries
,
M.
,
Hawkes
,
E. R.
,
Klasky
,
S.
,
Liao
,
W. K.
,
Ma
,
K. L.
,
Mellor-Crummey
,
J.
,
Podhorski
,
N.
,
Sankaran
,
R.
,
Shende
,
S.
and
Yoo
,
C. S.
, 2009, “
Terascale Direct Numerical Simulations of Turbulent Combustion Using S3D
,”
Comput. Sci. Discov.
,
2
, p.
015001
.
27.
Tarrazo
,
E.
,
Sanchez
,
A.
,
Liñán
,
A.
, and
Williams
,
F.
, 2006, “
A Simple One-Step Chemistry Model for Partially Premixed Hydrocarbon Combustion
,”
Combust. Flame
,
147
, pp.
32
38
.
28.
Malkeson
,
S. P.
, and
Chakraborty
,
N.
, 2010, “
A-Priori Direct Numerical Simulation Analysis of Algebraic Models of Variances and Scalar Dissipation Rates for Reynolds Averaged Navier Stokes Simulations for Low Damköhler Number Turbulent Partially-Premixed Combustion
,”
Combust. Sci. Technol.
,
182
, pp.
960
999
.
29.
Poinsot
,
T.
,
Echekki
,
T.
, and
Mungal
,
M.
, 1992, “
A Study of Laminar Flame Tip and Implications for Turbulent Premixed Combustion
,”
Combust. Sci. Technol.
,
81
(
1-3
), pp.
45
57
.
30.
Louch
,
D. S.
, and
Bray
,
K. N. C.
, 2001, “
Vorticity in Unsteady Premixed Flames: Vorticity Pair-Premixed Flame Interactions Under Imposed Body Forces and Various Degrees of Heat Release and Laminar Flame Thickness
,”
Combust. Flame
,
125
, pp.
1279
1309
.
31.
Treurniet
,
T. C.
,
Nieuwstadt
,
F. T. M.
, and
Boersma
,
B. S.
, 2006, “
Direct Numerical Simulation of Homogeneous Turbulence in Combination With Premixed Combustion at Low Mach Number Modelled by G-Equation
,”
J. Fluid Mech.
,
565
, pp.
25
62
.
32.
Gran
,
I. R.
,
Echekki
,
T.
, and
Chen
,
J. H.
, 1996, “
Negative Flame Speed in an Unsteady 2-D Premixed Flame: A Computational Study
,”
Proc. Combust. Inst.
,
26
, pp.
211
218
.
33.
Hélie
,
J.
, and
Trouvé
,
A.
, 1998, “
Turbulent Flame Propagation in Partially Premixed Combustion
,”
Proc. Combust. Inst.
,
27
, pp.
891
898
.
34.
Kollmann
,
W.
, and
Chen
,
J. H.
, 1998, “
Pocket Formation and the Flame Surface Density Equation
,”
Proc. Combust. Inst.
,
27
, pp.
927
934
.
35.
Chakraborty
,
N.
, and
Cant
,
R. S.
, 2005, “
Effects of Strain Rate and Curvature on Surface Density Function Transport in Turbulent Premixed Flames in the Thin Reaction Zones Regime
,”
Phys. Fluids
,
17
, p.
65108
.
36.
Chakraborty
,
N.
, and
Klein
,
M.
, 2008, “
Influence of Lewis Number on the Surface Density Function Transport in the Thin Reaction Zones Regime for Turbulent Premixed Flames
,”
Phys. Fluids
,
20
, p.
065102
.
37.
Chakraborty
,
N.
, and
Klein
,
M.
, 2009, “
Effects of Global Flame Curvature on the Surface Density Function Transport in Turbulent Premixed Flame Kernels in the Thin Reaction Zones Regime
,”
Proc. Combust. Inst.
,
32
, pp.
1435
1443
.
38.
Boger
,
M.
,
Veynante
,
D.
,
Boughanem
,
H.
, and
Trouvé
,
A.
, 1998, “
Direct Numerical Simulation Analysis of Flame Surface Density Concept for Large Eddy Simulation of Turbulent Premixed Combustion
,”
Proc. Combust. Inst.
,
27
, pp.
917
925
.
39.
Trouvé
,
A.
, and
Poinsot
,
T.
, 1994, “
The Evolution Equation for Flame Surface Density in Turbulent Premixed Combustion
,”
J. Fluid Mech.
,
278
, pp.
1
31
.
40.
Candel
,
S. M.
, and
Poinsot
,
T. J.
, 1990, “
Flame Stretch and the Balance Equation for the Flame Area
,”
Combust. Sci. Technol.
,
70
, pp.
1
15
.
41.
Chakraborty
,
N.
, and
Cant
,
R. S.
, 2007, “
A-Priori Analysis of the Curvature and Propagation Terms of the Flame Surface Density Transport Equation for Large Eddy Simulation
,”
Phys. Fluids
,
19
, p.
105101
.
42.
Müller
,
C. M.
,
Breitbach
,
H.
, and
Peters
,
N.
, 1994, “
Partially Premixed Turbulent Flame Propagation in Jet Flames
,”
Proc. Combust. Inst.
,
25
, pp.
1099
1106
.
43.
Kim
,
J.
,
Chung
,
S. H.
,
Ahn
,
K. Y.
, and
Kim
,
J. S.
, 2006, “
Simulation of a Diffusion Flame in a Turbulent Mixing Layer by the Flame Hole Dynamics Model Using Level Set Method
,”
Combust. Theory Modell.
,
10
, pp.
219
240
.
44.
Ballal
,
D. R.
, and
Lefebvre
,
A.
, 1977, “
Spark Ignition of Turbulent Flowing Gases
,” Proceedings of the 15th Aerospace Sciences Meeting, AIAA Los Angeles, Paper No. 77-185.
45.
Pantano
,
C.
, 2004, “
Direct Simulation of Non-Premixed Flame Extinction in a Methane-Air Jet with Reduced Chemistry
,”
J. Fluid Mech.
,
514
, pp.
231
270
.
46.
Rogallo
,
R. S.
, 1981, “
Numerical Experiments in Homogeneous Turbulence
,” NASA Technical Memorandum No. 81315,
NASA Ames Research Center
.
47.
Batchelor
,
G. K.
, and
Townsend
,
A. A.
, 1948, “
Decay of Turbulence in the Final Period
,”
Proc. Roy. Soc. A
,
194
, pp.
527
542
.
48.
Jenkins
,
K. W.
, and
Cant
,
R. S.
, 1999, “
DNS of Turbulent Flame Kernels
,” Proceedings of the Second AFOSR Conference on DNS and LES, Rutgers University, Kluwer Academic Publishers, pp.
192
202
.
49.
Wray
,
A. A.
, 1990, “
Minimal Storage Time Advancement Schemes for Spectral Methods
,”
NASA Ames Research Center
,
California
, Report No. MS 202 A-1.
50.
Lee
,
S.
,
Lele
,
S. K.
, and
Moin
,
P.
, 1992, “
Simulation of Spatially Evolving Turbulence and Applicability of Taylor’s Hypothesis in Compressible Flow
,”
Phys. Fluids A
,
4
(
7
), pp.
1521
1530
.
51.
Zhang
,
S.
, and
Rutland
,
C. J.
, 1995, “
Premixed Flame Effects on Turbulence and Pressure Related Terms
,”
Combust. Flame
,
102
, pp.
447
461
.
52.
Poinsot
,
T.
, and
Lele
,
S. K.
, 1992, “
Boundary Conditions for Direct Simulation of Compressible Viscous Flows
,”
J. Comp. Phys.
,
101
, pp.
104
129
.
53.
Ranga Dinesh
,
K. K. J.
, and
Kirkpatrick
,
M. J.
, 2009, “
Study of Jet Precession, Recirculation and Vortex Breakdown in Turbulent Swirling Jets using LES
,”
Comput. Fluids
,
38
(
6
), pp.
1232
1242
.
54.
Ranga Dinesh
,
K. K. J.
,
Kirkpatrick
,
M. P.
, and
Jenkins
,
K. W.
, 2010, “
Investigation of the Influence of Swirl on a Confined Coannular Swirl Jet
,”
Comput. Fluids
,
39
(
5
), pp.
756
767
.
55.
Chen
,
J. H.
, 2011, “
Petascale Direct Numerical Simulation of Turbulent Combustion—Fundamental Insights Towards Predictive Models
,”
Proc. Combust. Inst.
,
33
, pp.
99
123
.
56.
Haworth
,
D. C.
, and
Poinsot
,
T. J.
, 1992, “
Numerical Simulations of Lewis Number Effects in Turbulent Premixed Flames
,”
J. Fluid Mech.
,
244
, pp.
405
436
.
57.
Renou
,
B.
,
Boukhalfa
,
A.
,
Peuchberty
,
D.
, and
Trinité
,
M.
, 1998, “
Effects of Stretch on the Local Structure of Freely Propagating Premixed Low-Turbulent Flames with Various Lewis Numbers
,”
Proc. Combust. Inst.
,
27
, pp.
841
847
.
58.
Chakraborty
,
N.
,
Hesse
,
H.
, and
Mastorakos
,
E.
, 2010, “
Numerical Investigation of Edge Flame Propagation Behaviour in an Igniting Turbulent Planar Jet
,”
Combust. Sci. Technol.
,
182
, pp.
1747
1781
.
59.
Ko
,
Y. S.
, and
Chung
,
S. H.
, 1999, “
Propagation of Unsteady Tribrachial Flames in Laminar Non-Premixed Jets
,”
Combust. Flame
,
118
, pp.
151
163
.
60.
Mielenz
,
O.
,
Schlottmann
,
F.
, and
Rogg
,
B.
, 2000, “
Propagating Methane/Air Flame in a Counterflow Geometry
,”
Institut für Thermo-und Fluiddynamik, Ruhr University
,
Bochum, Germany
, Report No. ITF/LSTM/184.
61.
Won
,
S. H.
,
Kim
,
J.
,
Hong
,
K. J.
,
Cha
,
M. S.
, and
Chung
,
S. H.
, 2005, “
Stabilization Mechanism of Lifted Flame Edge in the Near Field of Coflow Jets for Diluted Methane
,”
Proc. Combust. Inst.
,
30
, pp.
339
347
.
62.
Ahmed
,
S. F.
, and
Mastorakos
,
E.
, 2006, “
Spark Ignition of Lifted Turbulent Jet Flames
,”
Combust. Flame
,
146
, pp.
215
231
.
63.
Chung
,
S. H.
, 2007, “
Stabilization, Propagation and Instability of Tribrachial Triple Flames
,”
Proc. Combust. Inst.
,
31
, pp.
877
892
.
64.
Kim
,
M. K.
,
Won
,
S. H.
, and
Chung
,
S. H.
, 2007, “
Effect of Velocity Gradient on Propagation Speed of Tribrachial Flames in Laminar Coflow Jets
,”
Proc. Combust. Inst.
,
31
, pp.
901
908
.
65.
Heeger
,
C.
,
Böhm
,
B.
,
Ahmed
,
S. F.
,
Gordon
,
R.
,
Boxx
,
I.
,
Meier
,
W.
,
Dreizler
,
A.
, and
Mastorakos
,
E.
, 2009, “
Statistics of Relative and Absolute Velocities of Turbulent Non-Premixed Edge Flames Following Spark Ignition
,”
Proc. Combust. Inst.
,
32
, pp.
2957
2964
.
66.
Echekki
,
T.
, and
Chen
,
J. H
, 1998, “
Structure and Propagation of Methanol–Air Triple Flames
,”
Combust. Flame
,
114
, pp.
231
245
.
67.
Im
,
H. G.
, and
Chen
,
J. H.
, 1999, “
Structure and Propagation of Triple Flames in Partially Premixed Hydrogen–Air Mixtures
,”
Combust. Flame
,
119
, pp.
436
454
.
68.
Yoo
,
C.
, and
Im
,
H. G.
, 2005, “
Transient Dynamics of Edge Flames in a Laminar Non-Premixed Hydrogen–Air Counterflow
,”
Proc. Combust. Inst.
,
30
, pp.
349
356
.
You do not currently have access to this content.