The flame transfer function (FTF) of a premixed swirl burner was identified from a time series generated with computational fluid dynamics simulations of compressible, turbulent, reacting flow at nonadiabatic conditions. Results were validated against experimental data. For large eddy simulation (LES), the dynamically thickened flame combustion model with one step kinetics was used. For unsteady simulation in a Reynolds-averaged Navier–Stokes framework (URANS), the Turbulent Flame Closure model was employed. The FTF identified from LES shows quantitative agreement with experiment for amplitude and phase, especially for frequencies below 200 Hz. At higher frequencies, the gain of the FTF is underpredicted. URANS results show good qualitative agreement, capturing the main features of the flame response. However, the maximum amplitude and the phase lag of the FTF are underpredicted. Using a low-order network model of the test rig, the impact of the discrepancies in predicted FTFs on frequencies and growth rates of the lowest order eigenmodes were assessed. Small differences in predicted FTFs were found to have a significant impact on stability limits. Stability behavior in agreement with experimental data was achieved only with the LES-based flame transfer function.

References

1.
Keller
,
J.
, 1995, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
33
(
12
), pp.
2280
2287
.
2.
Lieuwen
,
T.
, and
Yang
,
V.
, 2005,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modelling
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
3.
Lawn
,
C. J.
, and
Polifke
,
W.
, 2004, “
A Model for the Thermo-acoustic Response of a Premixed Swirl burner: Part II: The Flame Response
,”
Combust. Sci. Technol.
176
(
8
), pp.
1359
1390
.
4.
Poinsot
,
T.
, and
Veynante
,
D.
, 2005,
Theoretical and Numerical Combustion
, 2nd ed.,
R. T. Edwards
,
Philadelphia, PA
.
5.
Polifke
,
W.
, 2010, “
Low-Order Analysis Tools for Aero- and Thermo-Acoustic Instabilities
,”
Advances in Aero-Acoustics and Thermo-Acoustics
,
C.
Schram
, ed.,
von Karman Institute for Fluid Dynamics
,
Brussels, Belgium
.
6.
Leandro
,
R.
,
Huber
,
A.
, and
Polifke
,
W.
, 2010,
taX—A Low-Order Modeling Tool for Thermo- and Aero-Acoustic Instabilities. Technical report
, TU München. www.td.mw.tum.de/tum-td/en/forschung/infrastruktur/scientific_compwww.td.mw.tum.de/tum-td/en/forschung/infrastruktur/scientific_comp.
7.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2010, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
, pp.
1698
1717
.
8.
Kim
,
K.
,
Lee
,
H.
,
Lee
,
J.
,
Quay
,
B.
, and
Santavicca
,
D.
, 2009, “
Flame Transfer Function Measurement and Instability Frequency Prediction Using a Thermoacoustic Model
,” ASME Paper No. GT2009-60026.
9.
Hirsch
,
C.
,
Fanaca
,
D.
,
Reddy
,
P.
,
Polifke
,
W.
, and
Sattelmayer
,
T.
, 2005, “
Influence of the Swirler Design on the Flame Transfer Function of Premixed Flames
,” ASME Paper No. GT2005-68195.
10.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
, 2003, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
134
, pp.
21
34
.
11.
Huber
,
A.
, and
Polifke
,
W.
, 2009, “
Dynamics of Practical Premixed Flames, Part II: Identification and Interpretation of CFD Data
,”
Int. J. Spray Combust. Dyn.
1
(
2
), pp.
229
250
.
12.
Polifke
,
W.
,
Poncet
,
A.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
, 2001, “
Reconstruction of Acoustic Transfer Matrices by Instationary Computational Fluid Dynamics
,”
J. Sound Vib.
245
(
3
), pp.
483
510
.
13.
Tay Wo Chong
,
L.
,
Komarek
,
T.
,
Kaess
,
R.
,
Föller
,
S.
, and
Polifke
,
W.
, 2010, “
Identification of Flame Transfer Functions from LES of a Premixed Swirl Burner
,” ASME Paper No. GT2010-22769.
14.
Polifke
,
W.
, 2010, “
System Identification for Aero- and Thermo-Acoustic Applications
,”
Advances in Aero-Acoustics and Thermo-Acoustics
,
C.
Schram
, ed.
von Karman Institute for Fluid Dynamics
,
Brussels, Belgium
.
15.
Giauque
,
A.
, 2007, “
Fonctions de Transfert de Flamme et Energies des Perturbations dans les Ecoulements Reactifs
,” Ph.D. thesis, Institut National Polytechnique, Toulouse.
16.
Schmitt
,
P.
,
Poinsot
,
T.
,
Schuermans
,
B.
, and
Geigle
,
K. P.
, 2007, “
Large-Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High-Pressure Burner
,”
J. Fluid Mech.
570
, pp.
17
46
.
17.
Komarek
,
T.
, and
Polifke
,
W.
, 2010, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
J. Eng. Gas Turbines Power
,
132
, p.
061503
.
18.
Kopitz
,
J.
,
Bröcker
,
E.
, and
Polifke
,
W.
, 2005, “
Characteristics-Based Filter for Identification of Planar Acoustic Waves in Numerical Simulation of Turbulent Compressible Flow
,”
12th International Congress on Sound and Vibration
,
Lisbon, Portugal
.
19.
Huber
,
A.
, 2009, “
Impact of Fuel Supply Impedance and Fuel Staging on Gas Turbine Combustion Stability
,” Ph.D. thesis, Technische Universität München, Gemany.
20.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
, 2000, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
12
(
7
), pp.
1843
1863
.
21.
Legier
,
J.
,
Poinsot
,
T.
, and
Veynante
,
D.
, 2000, “
Large Eddy Simulation Model for Premixed and Non-Premixed Turbulent Combustion
,”
Proceedings of the 2000 Summer Program
,
Center for Turbulence Research
,
Stanford, CA
, pp.
157
168
.
22.
Zimont
,
V.
, and
Lipatnikov
,
A.
, 1995, “
A Numerical Model of Premixed Turbulent Combustion of Gases
,”
Chem. Phys. Rep.
14
(
7
), pp.
993
1025
.
24.
Poinsot
,
T.
, and
Lele
,
S.
, 1992, “
Boundary Conditions for Direct Simulation of Compressible Viscous Flows
,”
J. Comput. Phys.
101
, pp.
104
129
.
25.
Kaess
,
R.
,
Huber
,
A.
, and
Polifke
,
W.
, 2008, “
Time-Domain Impedance Boundary Condition for Compressible Turbulent Flows
,”
No. AIAA 2008-2921 in 14th AIAA/CEAS Aeroacoustics Conference
,
Vancouver, AIAA
.
26.
Polifke
,
W.
,
Wall
,
C.
, and
Moin
,
P.
, 2006, “
Partially Reflecting and Non-reflecting Boundary Conditions for Simulation of Compressible Viscous Flow
,”
J. Comput. Phys.
213
, pp.
437
449
.
27.
Tay Wo Chong
,
L.
, et al.
, 2011, “
Influence of Strain and Heat Loss on Flame Stabilization in a Non-Adiabatic Combustor
,”
Flow Turb. Combust.
, to be submitted.
28.
Efron
,
B.
, and
Tibshirani
,
R.
, 1993,
An Introduction to the Bootstrap
,
Chapman & Hall
,
London
.
29.
Wanke
,
E.
, 2010, “
FE-Verfahren zur Analyse der Thermoakustischen Stabilität nichtisentroper Strömungen
,” Ph.D. thesis, Technische Universität München, Germany.
30.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
, 2003, “
Ten Years of Industrial Experience with the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer 4
,
K.
Hanjalic
,
Y.
Nagano
, and
M.
Tummers
, eds.,
Begell House
,
Redding, CT
, pp.
625
632
.
31.
Nicoud
,
F.
, and
Ducros
,
F.
, 1999, “
Subgrid-Scale Stress Modeling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turb. Combust.
62
, pp.
183
200
.
You do not currently have access to this content.