For very high temperature reactors, the high level operating temperature of the fuel materials in normal and accidental conditions requires studying the possible chemical interaction between the UO2 fuel kernel and the surrounding structural materials (C, SiC) that could damage the tristructural isotropic particle. The partial pressures of the gaseous carbon oxides formed at the fuel (UO2)-buffer (C) interface leading to the build up of the internal pressure in the particle have to be predicted. A good knowledge of the phase diagram and thermodynamic properties of the uranium-carbon-oxygen (UCO) system is also required to optimize the fabrication process of “UCO” kernels made of a mixture of UO2 and UC2. Thermodynamic calculations using the FUELBASE database dedicated to Generation IV fuels (Guéneau, Chatain, Gossé, Rado, Rapaud, Lechelle, Dumas, and Chatillon, 2005, “A Thermodynamic Approach for Advanced Fuels of Gas Cooled Reactors,” J. Nucl. Mater., 344, pp. 191–197) allow predicting the phase equilibria involving carbide and/or oxycarbide phases at high temperature. Very high levels of CO(g) and CO2(g) equilibrium pressures are obtained above the UO2±x fuel in equilibrium with carbon that could lead to the failure of the particle in case of high oxygen stoichiometry of the uranium dioxide. To determine the deviation from thermodynamic equilibrium, measurements of the partial pressures of CO(g) and CO2(g) resulting from the UO2/C interaction have been performed by high temperature mass spectrometry on two types of samples: (i) pellets made of a mixture of UO2 and C powders or (ii) UO2 kernels embedded in carbon powder. Kinetics of the CO(g) and CO2(g) as a function of time and temperature was determined. The measured pressures are significantly lower than the equilibrium ones predicted by thermodynamic calculations. The major gaseous product is always CO(g), which starts to be released at 1473 K. From the analysis of the partial pressure profiles as a function of time and temperature, rates of CO(g) formation have been assessed. The influence of the different geometries of the samples is shown. The factors that limit the gas release can be related to interface or diffusion processes as a function of the type of sample. The present results show the utmost importance of kinetic factors that govern the UO2/C interaction.

1.
Guéneau
,
C.
,
Chatain
,
S.
,
Gossé
,
S.
,
Rado
,
C.
,
Rapaud
,
O.
,
Lechelle
,
J.
,
Dumas
,
J. C.
, and
Chatillon
,
C.
, 2005, “
A Thermodynamic Approach for Advanced Fuels of Gas Cooled Reactors
,”
J. Nucl. Mater.
0022-3115,
344
, pp.
191
197
.
2.
Mukerjee
,
S. K.
,
Dehadraya
,
J. V.
,
Vaidya
,
V. N.
, and
Sood
,
D. D.
, 1990, “
Kinetic Study of the Carbothermic Synthesis of Uranium Monocarbide Microspheres
,”
J. Nucl. Mater.
0022-3115,
172
, pp.
37
46
.
3.
Mukerjee
,
S. K.
,
Dehadraya
,
J. V.
,
Vaidya
,
V. N.
, and
Sood
,
D. D.
, 1994, “
Kinetics and Mechanism of UO2+C Reaction for UC/UC2 Preparation
,”
J. Nucl. Mater.
0022-3115,
210
, pp.
107
114
.
4.
Gossé
,
S.
,
Guéneau
,
C.
,
Chatain
,
S.
, and
Chatillon
,
C.
, 2006, “
Critical Review of Carbon Monoxide Pressure Measurements in the Uranium-Carbon-Oxygen Ternary System
,”
J. Nucl. Mater.
0022-3115,
352
(
1–3
), pp.
13
21
.
5.
Gossé
,
S.
,
Guéneau
,
C.
,
Chatain
,
S.
, and
Chatillon
,
C.
, 2008, “
Kinetic Study of the UO2/C Interaction by High-Temperature Mass Spectrometry
,”
Nucl. Eng. Des.
0029-5493,
238
(
11
), pp.
2866
2876
.
6.
Ginstling
,
A. M.
, and
Brounshtein
,
B. I.
, 1950, “
Diffusion Kinetics of Reactions in Spherical Particles
,”
J. Appl. Chem. USSR
0021-888X,
23
(
12
), pp.
1327
1338
.
7.
Danger
,
G.
, and
Besson
,
J.
, 1974, “
Etude Cinétique de la Carboréduction du Dioxyde d’Uranium
,”
J. Nucl. Mater.
0022-3115,
54
, pp.
190
198
.
8.
Carter
,
R. E.
, 1961, “
Kinetic Model for Solid-State Reactions
,”
J. Chem. Phys.
0021-9606,
34
(
6
), pp.
2010
2015
.
9.
Lindemer
,
T. B.
,
Allen
,
M. D.
, and
Leitnaker
,
J. M.
, 1969, “
Kinetics of the Graphite-Uranium Dioxide Reaction From 1400°C to 1756°C
,”
J. Am. Ceram. Soc.
0002-7820,
52
, pp.
233
237
.
10.
Spencer
,
W. D.
, and
Topley
,
B.
, 1929, “
Chemical Kinetics of the System Ag2CO3=Ag2O+CO2
,”
J. Chem. Soc.
0368-1769,
1
, pp.
2633
2650
.
11.
Jander
,
W.
, 1927, “
Solid State Reactions at High Temperature
,”
Z. Anorg. Allg. Chem.
0044-2313,
163
(
1
), pp.
1
30
, in German.
12.
Zhuravlev
,
V. F.
,
Lesokhin
,
I. G.
, and
Tempelman
,
R. G.
, 1948, “
Kinetics of Reactions in the Formation of Aluminates and the Contribution of Mineralizers to the Process
,”
J. Appl. Chem. USSR
0021-888X,
21
(
09
), pp.
887
890
.
13.
Guéneau
,
C.
,
Baïchi
,
M.
,
Labroche
,
D.
,
Chatillon
,
C.
, and
Sundmann
,
B.
, 2002, “
Thermodynamic Assessment of the Uranium-Oxygen System
,”
J. Nucl. Mater.
0022-3115,
304
(
2–3
), pp.
161
175
.
14.
Chevalier
,
P. Y.
, and
Fischer
,
E.
, 2001, “
Thermodynamic Modelling of the C-U and B-U Binary Systems
,”
J. Nucl. Mater.
0022-3115,
288
, pp.
100
129
.
15.
Petti
,
D. A.
,
Dolan
,
T. J.
,
Miller
,
G. K.
,
Moore
,
R. L.
,
Ougouag
,
A. M.
,
Oh
,
C. H.
, and
Gougar
,
H. D.
, 2002, “
Modular Pebble-Bed Reactor Project Laboratory-Directed Research and Development Program FY 2002 Annual Report
,” Report No. EXT-02-01545.
16.
Ainsley
,
R.
,
Harder
,
B. R.
,
Hodge
,
N.
,
Sowden
,
R. G.
,
White
,
D. B.
, and
Wood
,
D. C.
, 1963, “
Carbides as Reactor Fuels: Preparation from Oxides and Sintering Characteristics
,”
Proceedings of the New Nuclear Materials Including Non-Metallic Fuels Conference
, Prague,
1
, pp.
349
376
.
17.
Stinton
,
D. P.
,
Tiegs
,
S. M.
,
Lackey
,
W. J.
, and
Lindemer
,
T. B.
, 1979, “
Rate-Controlling Factors in the Carbothermic Preparation of UO2-UC2-C
Microspheres,”
J. Am. Ceram. Soc.
0002-7820,
62
(
11-12
), pp.
596
599
.
18.
Heyrman
,
M.
, 2004, “
Etude par Spectrométrie de Masse à Haute Température du Système Al2O3-C: Application aux Fours d’Elaboration sous Vide
,” Ph. D. thesis, INPG, Grenoble, France.
19.
Baïchi
,
M.
,
Chatillon
,
C.
,
Guéneau
,
C.
, and
Chatain
,
S.
, 2001, “
Mass Spectrometric Study of UO2−ZrO2 Pseudo-Binary System
,”
J. Nucl. Mater.
0022-3115,
294
(
1–2
), pp.
84
87
.
20.
Carlson
,
K. D.
, 1967,
The Characterization of High Temperature Vapors Chapter 5: The Knudsen Effusion Method
,
J. L.
Margrave
, ed.,
Wiley
,
New York
, Chap. 5, pp.
115
129
.
21.
Boinski
,
F.
,
Gossé
,
S.
,
Dugne
,
O.
, and
Guéneau
,
C.
, 2008, “
XRD and SEM/EDS Study of the Phases Distribution in the UO2+C Reactional System at High Temperature
,”
Proceedings of the Fourth Conference on HTR Technology
, Washington, DC, Sept. 28–Oct. 1.
You do not currently have access to this content.