The low-swirl injector (LSI) is a lean premixed combustion technology that has the potential for adaptation to fuel-flexible gas turbines operating on a variety of fuels. The objective of this study is to gain a fundamental understanding of the effect of syngas on the LSI flame behavior, the emissions, and the flowfield characteristics for adaptation to the combustion turbines in integrated gasification combined cycle clean coal power plants. The experiments were conducted in two facilities. Open atmospheric laboratory flames generated by a full size (6.35 cm) LSI were used to investigate the lean blow-off limits, emissions, and the flowfield characteristics. Verification of syngas operation at elevated temperatures and pressures were performed with a reduced scale (2.54 cm) LSI in a small pressurized combustion channel. The results show that the basic LSI design is amenable to burning syngases with up to 60% H2. Syngases with high H2 concentration have lower lean blow-off limits. From particle image velocimetry measurements, the flowfield similarity behavior and the turbulent flame speeds of syngases flames are consistent with those observed in hydrocarbon and pure or diluted hydrogen flames. The NOx emissions from syngas flames show log-linear dependency on the adiabatic flame temperature and are comparable to those reported for the gaseous fuels reported previously. Successful firing of the reduced-scale LSI at 450K<T<505K and 8 atm verified the operability of this concept at gas turbine conditions.

1.
Johnson
,
M. R.
,
Littlejohn
,
D.
,
Nazeer
,
W. A.
,
Smith
,
K. O.
, and
Cheng
,
R. K.
, 2005, “
A Comparison of the Flowfields and Emissions of High-Swirl Injectors and Low-Swirl Injectors for Lean Premixed Gas Turbines
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
2867
2874
.
2.
Nazeer
,
W. A.
,
Smith
,
K. O.
,
Sheppard
,
P.
,
Cheng
,
R. K.
, and
Littlejohn
,
D.
, 2006, “
Full Scale Testing of a Low Swirl Fuel Injector Concept for Ultra-Low NOx Gas Turbine Combustion Systems
,” ASME Paper No. GT2006-90150.
3.
Cheng
,
R. K.
, and
Littlejohn
,
D.
, 2008, “
Laboratory Study of Premixed H2-Air & H2–N2-Air Flames in a Low-Swirl Injector for Ultra-Low Emissions Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
5
), pp.
31503
-1–31503-
9
.
4.
Cheng
,
R. K.
,
Littlejohn
,
D.
,
Nazeer
,
W. A.
, and
Smith
,
K. O.
, 2008, “
Laboratory Studies of the Flow Field Characteristics of Low-Swirl Injectors for Application to Fuel-Flexible Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
2
), p.
021501
.
5.
Littlejohn
,
D.
, and
Cheng
,
R. K.
, 2007, “
Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines
,”
Proc. Combust. Inst.
1540-7489,
31
(
2
), pp.
3155
3162
.
6.
Sequera
,
D.
, and
Agrawal
,
A. K.
, 2007, “
Effects of Fuel Composition on Emissions From a Low-Swirl Burner
,” ASME Paper No. GT2007-28044.
7.
Chan
,
C. K.
,
Lau
,
K. S.
,
Chin
,
W. K.
, and
Cheng
,
R. K.
, 1992, “
Freely Propagating Open Premixed Turbulent Flames Stabilized by Swirl
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
24
, pp.
511
518
.
8.
Cheng
,
R. K.
,
Yegian
,
D. T.
,
Miyasato
,
M. M.
,
Samuelsen
,
G. S.
,
Pellizzari
,
R.
,
Loftus
,
P.
, and
Benson
,
C.
, 2000, “
Scaling and Development of Low-Swirl Burners for Low-Emission Furnaces and Boilers
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
1305
1313
.
9.
Bedat
,
B.
, and
Cheng
,
R. K.
, 1995, “
Experimental Study of Premixed Flames in Intense Isotropic Turbulence
,”
Combust. Flame
0010-2180,
100
(
3
), pp.
485
494
.
10.
Cheng
,
R. K.
, 1995, “
Velocity and Scalar Characteristics of Premixed Turbulent Flames Stabilized by Weak Swirl
,”
Combust. Flame
0010-2180,
101
(
1–2
), pp.
1
14
.
11.
Plessing
,
T.
,
Kortschik
,
C.
,
Mansour
,
M. S.
,
Peters
,
N.
, and
Cheng
,
R. K.
, 2000, “
Measurement of the Turbulent Burning Velocity and the Structure of Premixed Flames on a Low Swirl Burner
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
359
366
.
12.
Shepherd
,
I. G.
, and
Cheng
,
R. K.
, 2001, “
The Burning Rate of Premixed Flames in Moderate and Intense Turbulence
,”
Combust. Flame
0010-2180,
127
(
3
), pp.
2066
2075
.
13.
Cheng
,
R. K.
,
Shepherd
,
I. G.
,
Bedat
,
B.
, and
Talbot
,
L.
, 2002, “
Premixed Turbulent Flame Structures in Moderate and Intense Isotropic Turbulence
,”
Combust. Sci. Technol.
0010-2202,
174
(
1
), pp.
29
59
.
14.
Bell
,
J. B.
,
Day
,
M. S.
,
Shepherd
,
I. G.
,
Johnson
,
M. R.
,
Cheng
,
R. K.
,
Grcar
,
J. F.
,
Beckner
,
V. E.
, and
Lijewski
,
M. J.
, 2005, “
Numerical Simulation of a Laboratory-Scale Turbulent V-Flame
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
(
29
), pp.
10006
10011
.
15.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
, 2002, “
Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations
,”
Prog. Energy Combust. Sci.
0360-1285,
28
(
1
), pp.
1
74
.
16.
Melling
,
A.
, 1997, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1406
1416
.
17.
Wernet
,
M. P.
, 1999, “
Fuzzy Logic Enhanced Digital PIV Processing Software
,”
18th International Congress on Instrumentation for Aerospace Simulation Facilities
, Toulouse, France.
18.
Hwang
,
Y.
,
Ratner
,
A.
, and
Bethel
,
B.
, 2007, “
Chamber Pressure Perturbation Coupling With a Swirl-Stabilized Lean Premixed Flame at Elevated Pressures
,”
Fifth U.S. Combustion Meeting
,
Western States Section of the Com-bustion Institute
,
San Diego
.
19.
Cheng
,
R. K.
, 1984, “
Conditional Sampling of Turbulence Intensities and Reynolds Stress in Premixed Flames
,”
Combust. Sci. Technol.
0010-2202,
41
, pp.
109
142
.
20.
Jomaas
,
G.
,
Zheng
,
X. L.
,
Zhu
,
D. L.
, and
Law
,
C. K.
, 2005, “
Experimental Determination of Counterflow Ignition Temperatures and Laminar Flame Speeds of C2–C3 Hydrocarbons at Atmospheric and Elevated Pressures
,”
Proc. Combust. Inst.
1540-7489,
30
(
1
), pp.
193
200
.
You do not currently have access to this content.