Radiation heat transfer in a model combustor with interior and exterior conjugate heat transfers has been numerically studied. The previous investigations on turbulence, combustion, and scalar transfer modeling (Reynolds analogy), and comparisons with a comprehensive experimental database provide a reliable base to evaluate the effect of radiation heat transfer on the flow field and NO emission in the combustor. Some of the numerical results with and without radiation are presented and compared with the experimental measurements. It is found that the total radiation heat flux through the combustor wall is about 4.2% of the total energy released from the input fuel. The effect of radiation on the flow field is minor, particularly to the velocity field. In contrast, it has significant effects on the NO field, where the predicted values without radiation are two times higher than those with radiation or the experimental data. A considerable effect of radiation on the combustor wall temperature is also observed. In summary, to provide valuable predictions of NO emission and combustor liner temperature, the radiation heat transfer should be properly taken into account in numerical simulations.

1.
Jiang
,
L. Y.
, and
Campbell
,
I.
, 2007, “
Turbulence Modeling in a Model Combustor
,”
Can. Aeronautics Space J.
,
53
(
2
), pp.
47
57
. 0008-2821
2.
Jiang
,
L. Y.
, and
Campbell
,
I.
, 2007, “
Combustion Modeling in a Model Combustor
,”
J. Aerosp. Power
,
22
(
5
), pp.
694
703
.
3.
Jiang
,
L. Y.
, and
Campbell
,
I.
, 2005, “
A Critical Evaluation of NOx Modeling in a Model Combustor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
(
3
), pp.
483
491
.
4.
Campbell
,
I.
, and
Logan
,
D. L.
, 1997,
An Experimental Study of a Combusting Flow Past a Confined Bluff Body
,
Combustion Institute-Canadian Section
,
Halifax, Canada
.
5.
Jiang
,
L. Y.
, and
Campbell
,
I.
, 2008, “
Reynolds Analogy in Combustor Modeling
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
5-6
), pp.
1251
1263
.
6.
Viskanta
,
R.
, and
Menguc
,
M. P.
, 1987, “
Radiation Heat Transfer in Combustion Systems
,”
Prog. Energy Combust. Sci.
0360-1285,
13
, pp.
97
160
.
7.
Andreini
,
A.
,
Bacci
,
A.
,
Carcasci
,
C.
,
Facchini
,
B.
,
Asti
,
A.
,
Ceccherini
,
G.
,
Del Puglia
,
E.
, and
Modi
,
R.
, 2005, “
Numerical Heat Transfer Analysis of an Innovative Gas Turbine Combustor: Coupled Study of Radiation and Cooling in the Upper Part of the Liner
,” ASME Paper No. GT-2005-68365.
8.
Kutsenko
,
Yu. G.
, and
Onegin
,
S. F.
, 2006, “
Development and Application of CFD-Based Analysis Methodology to Evaluate Efficiency of Low NOx Combustion Technologies
,”
ASME Turbo Expo
, Paper No. GT-2006-90530.
9.
Ferziger
,
J. H.
, and
Peric
,
M.
, 2002,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
New York
, pp.
1
10
.
10.
Fluent Inc.
, 2006, “
Fluent 6.2 Documentation
,” 10 Cavendish Court, Lebanon, NH 03766.
11.
Raithby
,
G. D.
, and
Chui
,
E. H.
, 1990, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
415
423
.
12.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
, 1982, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
602
608
.
13.
Incropera
,
F. P.
, and
De Witt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
, pp.
732
and
929
.
14.
Rose
,
J. W.
, and
Cooper
,
J. R.
, 1997,
Technical Data on Fuel
,
Wiley
,
New York
.
15.
Sislian
,
J. P.
,
Jiang
,
L. Y.
, and
Cusworth
,
R. A.
, 1988, “
Laser Doppler Velocimetry Investigation of the Turbulence Structure of Axisymmetric Diffusion Flames
,”
Prog. Energy Combust. Sci.
0360-1285,
14
(
2
), pp.
99
146
.
You do not currently have access to this content.