This paper describes recent development of iso-octane skeletal and reduced mechanisms for speeding up numerical simulations of homogeneous charge compression ignition (HCCI) engines. A novel targeted search algorithm is developed to systematically screen species for quasisteady state (QSS) assumption in order to reduce the mechanism size while maintaining accuracy. This new approach is especially found useful when the chemical kinetics involve complex ignition pathways. Using the iso-octane mechanism developed by LLNL, a skeletal mechanism with 215 species (Skeletal-215) and a reduced mechanism with 63 non-QSS species (Reduced-63) were constructed. Evaluations of the performances of the Skeletal-215 and the Reduced-63 were extensively conducted for the operation regimes in HCCI engine applications. Both mechanisms are found satisfactory in predicting start of combustion and minor emission species.

1.
Choi
,
Y.
, and
Chen
,
J.-Y.
, 2005, “
Fast Prediction of Start-of-Combustion in HCCI With Combined Artificial Neural Networks and Ignition Delay Model
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
2711
2718
.
2.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
, 1992, “
Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics
,” Sandia National Laboratories, Report No. SAND89–8009B.
3.
KIVA3V
, 1997, “
A Block-Structured KIVA Program for Engines With Vertical or Canted Valves
,” Los Alamos Laboratory, Report No. LA-13313-MS.
4.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 2002, “
A Comprehensive Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
0010-2180,
129
, pp.
253
280
.
5.
Westbrook
,
C. K.
, 2000, “
Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
1563
1577
.
6.
Roberts
,
C. E.
,
Matthews
,
R. D.
, and
Leppard
,
W. R.
, 1996, “
Development of a Semi-Detailed Kinetics Mechanism for the Autoignition of Iso-Octane
,” SAE Paper No. 962107.
7.
Soyhan
,
H.
,
Amnéus
,
P.
,
Mauss
,
F.
, and
Sorusbay
,
C.
, 1999, “
A Skeletal Mechanism for the Oxidation of Iso-Octane an n-Heptane Validated Under Engine Knock Conditions
,”
Transactions, Journal of Fuels and Lubricants
,
108
, pp.
1402
1409
.
8.
Soyhan
,
H. S.
,
Amnéus
,
P.
,
Løvås
,
T.
,
Nilsson
,
D.
,
Maigaard
,
P.
,
Mauss
,
F.
, and
Sorusbay
,
C.
, 2000, “
Automatic Reduction of Detailed Chemical Reaction Mechanisms for Autoignition Under Engine Knock Conditions
,” Transactions,
Journal of Fuels and Lubricants
,
109
, pp.
1435
1444
.
9.
Aceves
,
S. M.
,
Martinez-Frias
,
J.
,
Flower
,
D.
,
Smith
,
J. R.
,
Dibble
,
R. W.
, and
Chen
,
J.-Y.
, 2002, “
A Computer Generated Reduced Iso-Octane Chemical Kinetic Mechanism Applied to Simulation of HCCI Combustion
,” SAE Paper No. 2002–01–2870.
10.
Maigaard
,
P.
,
Mauss
,
F.
, and
Kraft
,
M.
, 2003, “
Homogeneous Charge Compression Ignition Engine: A Simulation Study on the Effects of Inhomogeneities
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
466
471
.
11.
Chen
,
J.-Y.
, 2001, “
Automatic Generation of Reduced Mechanisms and Their Applications to Combustion Modeling
,”
Transactions of the Aeronautical and Astronautical Society of the Republic of China
,
33
, pp.
59
67
.
12.
Wang
,
H.
, and
Frenklach
,
M.
, 1991, “
Direct Reduction of Reaction Mechanisms for Flame Modeling
,”
Combust. Flame
0010-2180,
87
, pp.
365
370
.
13.
Lu
,
T.
, and
Law
,
C. K.
, 2006, “
Linear Time Reduction of Large Kinetic Mechanisms With Directed Relation Graph: n-Heptane and Iso-Octane
,”
Combust. Flame
0010-2180,
144
, pp.
24
36
.
14.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R. W.
, 2001,
Combustion
, 3rd ed.,
Springer-Verlag
,
Berlin
, pp.
86
88
.
15.
Glassman
,
I.
, 1996,
Combustion
, 3rd ed.,
Academic
,
San Diego
, p.
47
.
16.
Law
,
C. K.
, 2006,
Combustion Physics
,
Cambridge University Press
,
New York
, pp.
129
131
.
17.
Peters
,
N.
,
Turbulent Combustion
,
Cambridge University Press
,
New York
, p.
23
.
18.
Chen
,
J.-Y.
, 1988, “
A General Procedure for Constructing Reduced Reaction Mechanisms With Given Independent Relations
,”
Combust. Sci. Technol.
0010-2202,
57
, pp.
89
94
.
19.
Turanyi
,
T.
,
Tomlin
,
A. S.
, and
Pilling
,
M. J.
, 1993, “
On the Error of the Quasi-Steady-State Approximation
,”
J. Phys. Chem.
0022-3654,
97
, pp.
163
172
.
20.
Massias
,
A.
,
Diamantis
,
D.
,
Mastorakos
,
E.
, and
Goussis
,
D. A.
, 1999, “
An Algorithm for the Construction of Global Mechanisms With CSP Data
,”
Combust. Flame
0010-2180,
117
, pp.
685
708
.
21.
Lu
,
T.
,
Ju
,
Y.
, and
Law
,
C. K.
, 2001, “
Complex CSP for Chemistry Reduction and Analysis
,”
Combust. Flame
0010-2180,
126
, pp.
1445
1455
.
22.
Lam
,
S. H.
, 1993, “
Using CSP to Understand Complex Chemical Kinetics
,”
Combust. Sci. Technol.
0010-2202,
89
(
5–6
), pp.
375
404
.
23.
Løvås
,
T.
,
Amnéus
,
P.
,
Mauss
,
F.
, and
Mastorakos
,
E.
, 2002, “
Comparison of Automatic Reduction Procedures for Ignition Chemistry
,”
29th Symposium (International) on Combustion
, The Combustion Institute.
24.
Bhattacharjee
,
B.
,
Schwer
,
D.
,
Barton
,
P.
, and
Green
,
W.
, 2003, “
Optimally-Reduced Kinetic Models: Reaction Elimination in Large-Scale Kinetic Mechanisms
,”
Combust. Flame
0010-2180,
135
, pp.
191
208
.
25.
Montgomery
,
C. J.
,
Yang
,
C.
,
Parkinson
,
A. R.
, and
Chen
,
J.-Y.
, 2006, “
Selecting the Optimum Quasi-Steady State Species for Reduced Chemical Kinetic Mechanisms Using a Genetic Algorithm
,”
Combust. Flame
0010-2180,
144
, pp.
37
52
.
26.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
, pp.
679
680
.
You do not currently have access to this content.