Graphical Abstract Figure

Morphodynamic evolution of a dispersed droplet within T-junction with different temperatures of heater for θ=150° and heater position A.

Graphical Abstract Figure

Morphodynamic evolution of a dispersed droplet within T-junction with different temperatures of heater for θ=150° and heater position A.

Close modal

Abstract

This article presents a computational-based investigation exploring the influence of thermocapillarity and surface wettability on the splitting behavior of a droplet in a three-dimensional T-junction microchannel. The splitting process is triggered by using a heater on two different locations of the microchannel, which induces thermocapillarity and reduces viscosity around the corresponding location. Three different surface wettability conditions are considered to develop a clear understanding of the wettability–thermocapillary interaction. The temporal evolution of the droplet splitting behavior for different heater temperatures, heater positions, and wettability scenarios is discussed in detail to interpret the breakup mechanism. The splitting and nonsplitting droplets of different sizes are observed for the considered temperature range and heater positions, along with the wettability configurations. The findings establish the fact that higher thermal contrast in the flow confinement leads to an asymmetric breakup or even nonsplitting regimes. Changing the wettability of the wall from hydrophilic to hydrophobic provides a wide range of size ratio of the daughter droplets. Furthermore, a novel breakup technique is presented by taking different wall wettability of the daughter branches, which ensures more control to achieve the desired breakup phenomenon.

References

1.
Burns
,
M. A.
,
Johnson
,
B. N.
,
Brahmasandra
,
S. N.
,
Handique
,
K.
,
Webster
,
J. R.
,
Krishnan
,
M.
,
Sammarco
,
T. S.
, et al.,
1998
, “
An Integrated Nanoliter DNA Analysis Device
,”
Science
,
282
(
5388
), pp.
484
487
.10.1126/science.282.5388.484
2.
Song
,
H.
, and
Ismagilov
,
R. F.
,
2003
, “
Millisecond Kinetics on a Microfluidic Chip Using Nanoliters of Reagents
,”
J. Am. Chem. Soc.
,
125
(
47
), pp.
14613
14619
.10.1021/ja0354566
3.
Böhmer
,
M. R.
,
Schroeders
,
R.
,
Steenbakkers
,
J. A.
,
de Winter
,
S. H.
,
Duineveld
,
P. A.
,
Lub
,
J.
,
Nijssen
,
W. P.
,
Pikkemaat
,
J. A.
, and
Stapert
,
H. R.
,
2006
, “
Preparation of Monodisperse Polymer Particles and Capsules by Ink-Jet Printing
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
289
(
1–3
), pp.
96
104
.10.1016/j.colsurfa.2006.04.011
4.
Tangen
,
U.
,
Sharma
,
A.
,
Wagler
,
P.
, and
McCaskill
,
J. S.
,
2015
, “
On Demand Nanoliter-Scale Microfluidic Droplet Generation, Injection, and Mixing Using a Passive Microfluidic Device
,”
Biomicrofluidics
,
9
(
1
), p.
014119
.10.1063/1.4907895
5.
Darhuber
,
A. A.
,
Davis
,
J. M.
,
Troian
,
S. M.
, and
Reisner
,
W. W.
,
2003
, “
Thermocapillary Actuation of Liquid Flow on Chemically Patterned Surfaces
,”
Phys. Fluids
,
15
(
5
), pp.
1295
1304
.10.1063/1.1562628
6.
Chen
,
Y.
,
Liu
,
X.
, and
Zhao
,
Y.
,
2015
, “
Deformation Dynamics of Double Emulsion Droplet Under Shear
,”
Appl. Phys. Lett.
,
106
, p.
141601
.10.1063/1.4916623
7.
Zhang
,
C.
,
Gao
,
W.
,
Zhao
,
Y.
, and
Chen
,
Y.
,
2018
, “
Microfluidic Generation of Self-Contained Multicomponent Microcapsules for Self-Healing Materials
,”
Appl. Phys. Lett.
,
113
, p.
203702
.10.1063/1.5064439
8.
Chen
,
Y.
,
Liu
,
X.
, and
Shi
,
M.
,
2013
, “
Hydrodynamics of Double Emulsion Droplet in Shear Flow
,”
Appl. Phys. Lett.
,
102
, p.
051609
.10.1063/1.4789865
9.
Gossett
,
D. R.
,
Weaver
,
W. M.
,
MacH
,
A. J.
,
Hur
,
S. C.
,
Tse
,
H. T. K.
,
Lee
,
W.
,
Amini
,
H.
, and
Di Carlo
,
D.
,
2010
, “
Label-Free Cell Separation and Sorting in Microfluidic Systems
,”
Anal. Bioanal. Chem.
,
397
(
8
), pp.
3249
3267
.10.1007/s00216-010-3721-9
10.
Olsvik
,
Ø.
,
Popovic
,
T.
,
Skjerve
,
E.
,
Cudjoe
,
K. S.
,
Hornes
,
E.
,
Ugelstad
,
J.
, and
Uhlén
,
M.
,
1994
, “
Magnetic Separation Techniques in Diagnostic Microbiology
,”
Clin. Microbiol. Rev.
,
7
(
1
), pp.
43
54
.10.1128/CMR.7.1.43
11.
Jena
,
S. K.
,
Srivastava
,
T.
,
Bahga
,
S. S.
, and
Kondaraju
,
S.
,
2023
, “
Effect of Channel Width on Droplet Generation Inside T-Junction Microchannel
,”
Phys. Fluids
,
35
, p.
022107
.10.1063/5.0134087
12.
Nath
,
A. J.
,
Deka
,
D. K.
, and
Pati
,
S.
,
2023
, “
Numerical Investigation of Droplet Generation Within a Microfluidic T-Junction With Semicylindrical Obstacle
,”
ASME J. Fluids Eng.
,
145
(
1
), p.
011202
.10.1115/1.4055177
13.
Deka
,
D. K.
, and
Pati
,
S.
,
2021
, “
Influence of Wettability and Initial Size on the Merging Dynamics of Droplet Within a Y-Shaped Bifurcating Channel
,”
Fluid Dyn. Res.
,
53
(
3
), p.
035506
.10.1088/1873-7005/ac075e
14.
Kuang
,
Y.
,
Deng
,
T.
,
Huang
,
Y.
,
Liu
,
L.
, and
Chen
,
G.
,
2024
, “
Droplet Pair Breakup in Microfluidic Expansion Channel
,”
Appl. Phys. Lett.
,
124
, p.
034102
.10.1063/5.0183413
15.
Ting
,
T. H.
,
Yap
,
Y. F.
,
Nguyen
,
N. T.
,
Wong
,
T. N.
,
Chai
,
J. C. K.
, and
Yobas
,
L.
,
2006
, “
Thermally Mediated Breakup of Drops in Microchannels
,”
Appl. Phys. Lett.
,
89
, p.
234101
.10.1063/1.2400200
16.
Zhu
,
P.
, and
Wang
,
L.
,
2017
, “
Passive and Active Droplet Generation With Microfluidics: A Review
,”
Lab Chip
,
17
(
1
), pp.
34
75
.10.1039/C6LC01018K
17.
Deka
,
D. K.
,
Pati
,
S.
, and
Randive
,
P. R.
,
2022
, “
Implications of Capillarity-Wettability Interaction on Geometrically Mediated Droplet Splitting Mechanism
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
633
, p.
127873
.10.1016/j.colsurfa.2021.127873
18.
Jafari
,
I.
, and
Fallah
,
K.
,
2020
, “
Drop Breakup in a Symmetric T-Junction Microchannel Under Electric Field
,”
Microfluid. Nanofluid.
,
24
(
12
), pp. 1–11.10.1007/s10404-020-02399-3
19.
Fallah
,
K.
, and
Fattahi
,
E.
,
2022
, “
Splitting of Droplet With Different Sizes Inside a Symmetric T-Junction Microchannel Using an Electric Field
,”
Sci. Rep.
,
12
(
1
), p.
3226
.10.1038/s41598-022-07130-6
20.
Wu
,
Y.
,
Fu
,
T.
,
Ma
,
Y.
, and
Li
,
H. Z.
,
2015
, “
Active Control of Ferrofluid Droplet Breakup Dynamics in a Microfluidic T-Junction
,”
Microfluid. Nanofluid.
,
18
(
1
), pp.
19
27
.10.1007/s10404-014-1414-y
21.
Wehking
,
J. D.
,
Chew
,
L.
, and
Kumar
,
R.
,
2013
, “
Droplet Deformation and Manipulation in an Electrified Microfluidic Channel
,”
Appl. Phys. Lett.
,
103
(
5
), p.
054101
.10.1063/1.4817008
22.
Zhu
,
G.
,
Nguyen
,
N.-T.
,
Ramanujan
,
R. V.
, and
Huang
,
X.
,
2011
, “
Nonlinear Deformation of a Ferrofluid Droplet in a Uniform Magnetic Field
,”
Langmuir
,
27
(
24
), pp.
14834
14841
.10.1021/la203931q
23.
Hong
,
J.
,
Choi
,
M.
,
Edel
,
J. B.
, and
deMello
,
A. J.
,
2010
, “
Passive Self-Synchronized Two-Droplet Generation
,”
Lab Chip
,
10
(
20
), pp.
2702
2709
.10.1039/c005136e
24.
Choi
,
J. W.
,
Lee
,
J. M.
,
Kim
,
T. H.
,
Ha
,
J. H.
,
Ahrberg
,
C. D.
, and
Chung
,
B. G.
,
2018
, “
Dual-Nozzle Microfluidic Droplet Generator
,”
Nano Convergence
,
5
(
1
), p.
12
.10.1186/s40580-018-0145-2
25.
Cui
,
W.
,
Yesiloz
,
G.
, and
Ren
,
C. L.
,
2021
, “
Microwave Heating Induced On-Demand Droplet Generation in Microfluidic Systems
,”
Anal. Chem.
,
93
(
3
), pp.
1266
1270
.10.1021/acs.analchem.0c04431
26.
Hoang
,
D. A.
,
Portela
,
L. M.
,
Kleijn
,
C. R.
,
Kreutzer
,
M. T.
, and
Van Steijn
,
V.
,
2013
, “
Dynamics of Droplet Breakup in a T-Junction
,”
J. Fluid Mech.
,
717
, p.
R4
.10.1017/jfm.2013.18
27.
Chen
,
B.
,
Li
,
G.
,
Wang
,
W.
, and
Wang
,
P.
,
2015
, “
3D Numerical Simulation of Droplet Passive Breakup in a Micro-Channel T-Junction Using the Volume-of-Fluid Method
,”
Appl. Therm. Eng.
,
88
, pp.
94
101
.10.1016/j.applthermaleng.2014.11.084
28.
Chen
,
Y.
, and
Deng
,
Z.
,
2017
, “
Hydrodynamics of a Droplet Passing Through a Microfluidic T-Junction
,”
J. Fluid Mech.
,
819
, pp.
401
434
.10.1017/jfm.2017.181
29.
Moon
,
S. K.
,
Cheong
,
I. W.
, and
Choi
,
S. W.
,
2014
, “
Effect of Flow Rates of the Continuous Phase on Droplet Size in Dripping and Jetting Regimes in a Simple Fluidic Device for Coaxial Flow
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
454
, pp.
84
88
.10.1016/j.colsurfa.2014.04.006
30.
Zhu
,
P.
,
Tang
,
X.
, and
Wang
,
L.
,
2016
, “
Droplet Generation in Co-Flow Microfluidic Channels With Vibration
,”
Microfluid. Nanofluid.
,
20
(
3
), pp.
1
10
.10.1007/s10404-016-1717-2
31.
Shams Khorrami
,
A.
, and
Rezai
,
P.
,
2018
, “
Oscillating Dispersed-Phase Co-Flow Microfluidic Droplet Generation: Multi-Droplet Size Effect
,”
Biomicrofluidics
,
12
(
3
), p.
034113
.10.1063/1.5034473
32.
Sun
,
X.
,
Zhu
,
C.
,
Fu
,
T.
,
Ma
,
Y.
, and
Li
,
H. Z.
,
2018
, “
Dynamics of Droplet Breakup and Formation of Satellite Droplets in a Microfluidic T-Junction
,”
Chem. Eng. Sci.
,
188
, pp.
158
169
.10.1016/j.ces.2018.05.027
33.
Leshansky
,
A. M.
, and
Pismen
,
L. M.
,
2009
, “
Breakup of Drops in a Microfluidic T-Junction
,”
Phys. Fluids
,
21
, p.
023303
.10.1063/1.3078515
34.
Tazikeh Lemeski
,
A.
,
Seyyedi
,
S. M.
,
Hashemi-Tilehnoee
,
M.
, and
Naeimi
,
A. S.
,
2024
, “
Influence of Triangular Obstacles on Droplet Breakup Dynamics in Microfluidic Systems
,”
Sci. Rep.
,
14
(
1
), p.
13324
.10.1038/s41598-024-63922-y
35.
Jullien
,
M. C.
,
Tsang Mui Ching
,
M. J.
,
Cohen
,
C.
,
Menetrier
,
L.
, and
Tabeling
,
P.
,
2009
, “
Droplet Breakup in Microfluidic T-Junctions at Small Capillary Numbers
,”
Phys. Fluids
,
21
, p.
072001
.10.1063/1.3170983
36.
Deka
,
D. K.
,
Boruah
,
M. P.
,
Pati
,
S.
,
Randive
,
P. R.
, and
Mukherjee
,
P. P.
,
2020
, “
Tuning the Splitting Behavior of Droplet in a Bifurcating Channel Through Wettability–Capillarity Interaction
,”
Langmuir
,
36
(
35
), pp.
10471
10489
.10.1021/acs.langmuir.0c01633
37.
Ma
,
D.
,
Liang
,
D.
,
Zhu
,
C.
,
Fu
,
T.
,
Ma
,
Y.
,
Yuan
,
X.
, and
Li
,
H. Z.
,
2021
, “
The Breakup Dynamics and Mechanism of Viscous Droplets in Y-Shaped Microchannels
,”
Chem. Eng. Sci.
,
231
, p.
116300
.10.1016/j.ces.2020.116300
38.
Li
,
S.
,
Wen
,
L.
, and
Wang
,
W.
,
2023
, “
Asymmetric Breakup of a Single Droplet Through a Y-Junction Microchannel With Non-Uniform Flow Rate
,”
Phys. Fluids
,
35
, p.
042015
.10.1063/5.0142244
39.
Wu
,
S.
,
Wu
,
L.
,
Chen
,
J.
,
Zhang
,
C.
,
Liu
,
X.
,
Chen
,
Y.
, and
Gao
,
W.
,
2023
, “
Splitting Behaviors of Droplets in Fractal Tree-Shaped Microchannels
,”
Int. J. Multiphase Flow
,
163
, p.
104440
.10.1016/j.ijmultiphaseflow.2023.104440
40.
Bedram
,
A.
, and
Moosavi
,
A.
,
2011
, “
Droplet Breakup in an Asymmetric Microfluidic T Junction
,”
EPJE
,
34
(
8
), pp.
1
8
.10.1140/epje/i2011-11078-7
41.
Wang
,
X.
,
Liu
,
Z.
, and
Pang
,
Y.
,
2018
, “
Droplet Breakup in an Asymmetric Bifurcation With Two Angled Branches
,”
Chem. Eng. Sci.
,
188
, pp.
11
17
.10.1016/j.ces.2018.05.003
42.
Samie
,
M.
,
Salari
,
A.
, and
Shafii
,
M. B.
,
2013
, “
Breakup of Microdroplets in Asymmetric T Junctions
,”
Phys. Rev. E
,
87
(
5
), p.
053003
.10.1103/PhysRevE.87.053003
43.
Mastiani
,
M.
,
Seo
,
S.
,
Jimenez
,
S. M.
,
Petrozzi
,
N.
, and
Kim
,
M. M.
,
2017
, “
Flow Regime Mapping of Aqueous Two-Phase System Droplets in Flow-Focusing Geometries
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
531
, pp.
111
120
.10.1016/j.colsurfa.2017.07.083
44.
Bai
,
F.
,
He
,
X.
,
Yang
,
X.
,
Zhou
,
R.
, and
Wang
,
C.
,
2017
, “
Three Dimensional Phase-Field Investigation of Droplet Formation in Microfluidic Flow Focusing Devices With Experimental Validation
,”
Int. J. Multiphase Flow
,
93
, pp.
130
141
.10.1016/j.ijmultiphaseflow.2017.04.008
45.
Carlson
,
A.
,
Do-Quang
,
M.
, and
Amberg
,
G.
,
2010
, “
Droplet Dynamics in a Bifurcating Channel
,”
Int. J. Multiphase Flow
,
36
(
5
), pp.
397
405
.10.1016/j.ijmultiphaseflow.2010.01.002
46.
Ménétrier-Deremble
,
L.
, and
Tabeling
,
P.
,
2006
, “
Droplet Breakup in Microfluidic Junctions of Arbitrary Angles
,”
Phys. Rev. E
,
74
(
3
), p.
035303
.10.1103/PhysRevE.74.035303
47.
Zhou
,
J.
,
Ducimetière
,
Y. M.
,
Migliozzi
,
D.
,
Keiser
,
L.
,
Bertsch
,
A.
,
Gallaire
,
F.
, and
Renaud
,
P.
,
2023
, “
Breaking One Into Three: Surface-Tension-Driven Droplet Breakup in T-Junctions
,”
Phys. Rev. Fluids
,
8
(
5
), p.
054201
.10.1103/PhysRevFluids.8.054201
48.
Hoa
,
P. C.
,
Yap
,
Y. F.
,
Nguyen
,
N. T.
, and
Chee-Kiong Chai
,
J.
,
2011
, “
Thermally Mediated Droplet Formation at a Microfluidic T-Junction
,”
Micro Nanosyst.
,
3
(
1
), pp.
65
75
.10.2174/1876402911103010065
49.
Nguyen
,
N. T.
,
Ting
,
T. H.
,
Yap
,
Y. F.
,
Wong
,
T. N.
,
Chai
,
J. C. K.
,
Ong
,
W. L.
,
Zhou
,
J.
,
Tan
,
S. H.
, and
Yobas
,
L.
,
2007
, “
Thermally Mediated Droplet Formation in Microchannels
,”
Appl. Phys. Lett.
,
91
, p.
084102
.10.1063/1.2773948
50.
Kumar
,
P.
, and
Pathak
,
M.
,
2020
, “
Pressure Transient During Wettability-Mediated Droplet Formation in a Microfluidic T-Junction
,”
Ind. Eng. Chem. Res.
,
59
(
25
), pp.
11839
11850
.10.1021/acs.iecr.0c01504
51.
Boruah
,
M. P.
,
Sarker
,
A.
,
Randive
,
P. R.
,
Pati
,
S.
, and
Chakraborty
,
S.
,
2018
, “
Wettability-Mediated Dynamics of Two-Phase Flow in Microfluidic T-Junction
,”
Phys. Fluids
,
30
(
12
), p.
122106
.10.1063/1.5054898
52.
Pandey
,
S. P.
,
Sarkar
,
S.
, and
Pal
,
D.
,
2024
, “
Surface Wettability-Induced Modulations of Droplet Breakup in a Bifurcated Microchannel
,”
Phys. Fluids
,
36
, p.
022010
.10.1063/5.0185582
53.
Baroud
,
C. N.
,
Gallaire
,
F.
, and
Dangla
,
R.
,
2010
, “
Dynamics of Microfluidic Droplets
,”
Lab Chip
,
10
(
16
), pp.
2032
2045
.10.1039/c001191f
54.
Li
,
X. B.
,
Li
,
F. C.
,
Yang
,
J. C.
,
Kinoshita
,
H.
,
Oishi
,
M.
, and
Oshima
,
M.
,
2012
, “
Study on the Mechanism of Droplet Formation in T-Junction Microchannel
,”
Chem. Eng. Sci.
,
69
(
1
), pp.
340
351
.10.1016/j.ces.2011.10.048
55.
COMSOL, 2025, “
COMSOL Multiphysics® v. 5.4
,”
COMSOL AB
,
Stockholm, Sweden
, accessed Feb. 28, 2025, https://www.comsol.com/release/5.4
56.
Johansson
,
N.
,
2011
, “
Implementation of a Standard Level Set Method for Incompressible Two-Phase Flow Simulations
,” Master’s degree thesis,
Uppsala University
,
Uppsala, Sweden
.
57.
Reddy
,
J. N.
,
2019
,
Introduction to the Finite Element Method
, 4th ed.,
McGraw-Hill Education
,
New York
.
58.
Bathe
,
K. J.
,
2006
,
Finite Element Procedures
, 2nd ed., Klaus-Jurgen Bathe,
Englewood Cliffs, NJ
.
You do not currently have access to this content.