Abstract

A new method was developed to predict the pressure drop and minimum fluidization velocity as a function of inlet gas velocity for multicomponent fluidized beds. The method attributes the changing bed composition during the fluidization process by using a definition for the mass fractions of the bed not yet fluidized. First, a literature survey presents single and multicomponent system correlations that estimate the minimum fluidization velocity. Then, development of the “MASS method” was described and compared to published experimental data and numerical simulations for pressure drop from single-, binary-, and ternary-component fluidized bed systems, where good agreement was observed. Minimum fluidization velocities predicted using correlations in the literature were compared with the MASS method and corresponding experimental data and numerical simulations. The predicted minimum fluidization velocity from the MASS method provided very good results with a relative error of ±4% compared to experimental data. The MASS method was shown to accurately predict fluidization of complex multicomponent systems of granular material and can be used to predict other systems.

References

1.
Cui
,
H.
, and
Grace
,
J. R.
,
2007
, “
Fluidization of Biomass Particles: A Review of Experimental Multiphase Flow Aspects
,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
45
55
.10.1016/j.ces.2006.08.006
2.
Mayerhofer
,
M.
,
Fendt
,
S.
,
Spliethoff
,
H.
, and
Gaderer
,
M.
,
2014
, “
Fluidized Bed Gasification of Biomass – in Bed Investigation of Gas and Tar Formation
,”
Fuel
,
117
, pp.
1248
1255
.10.1016/j.fuel.2013.06.025
3.
Nam
,
H.
,
Wang
,
S.
,
Sanjeev
,
K. C.
,
Seo
,
M. W.
,
Adhikari
,
S.
,
Shakya
,
R.
,
Lee
,
D.
, and
Shanmugam
,
S. R.
,
2020
, “
Enriched Hydrogen Production Over Air and Air-Steam Fluidized Bed Gasification in a Bubbling Fluidized Bed Reactor With CaO: Effects of Biomass and Bed Material Catalyst
,”
Energy Convers. Manage.
,
225
, p.
113408
.10.1016/j.enconman.2020.113408
4.
Puig-Gamero
,
M.
,
Pio
,
D. T.
,
Tarelho
,
L. A. C.
,
Sánchez
,
P.
, and
Sanchez-Silva
,
L.
,
2021
, “
Simulation of Biomass Gasification in Bubbling Fluidized Bed Reactor Using Aspen Plus®
,”
Energy Convers. Manage.
,
235
, p.
113981
.10.1016/j.enconman.2021.113981
5.
Kim
,
J.-W.
,
Jeong
,
Y.-S.
, and
Kim
,
J.-S.
,
2022
, “
Bubbling Fluidized Bed Biomass Gasification Using a Two-Stage Process at 600 °C: A Way to Avoid Bed Agglomeration
,”
Energy
,
250
, p.
123882
.10.1016/j.energy.2022.123882
6.
Jena
,
H. M.
,
Roy
,
G. K.
, and
Biswal
,
K. C.
,
2008
, “
Studies on Pressure Drop and Minimum Fluidization Velocity of Gas–Solid Fluidization of Homogeneous Well-Mixed Ternary Mixtures in un-Promoted and Promoted Square Bed
,”
Chem. Eng. J.
,
145
(
1
), pp.
16
24
.10.1016/j.cej.2008.02.013
7.
Kitto
,
J. B.
, and
Stultz
,
S. C.
,
2005
,
Steam Its Generation and Use
,
The Babcock & Wilcox Company
,
Barberton
.
8.
Feng
,
Z.-G.
,
Alatawi
,
E. S.
,
Roig
,
A.
, and
Sarikaya
,
C.
,
2016
, “
A Resolved Eulerian–Lagrangian Simulation of Fluidization of 1204 Heated Spheres in a Bed With Heat Transfer
,”
ASME J. Fluids Eng.
,
138
(
4
), p. 041305.10.1115/1.4031690
9.
Estejab
,
B.
, and
Battaglia
,
F.
,
2016
, “
Assessment of Drag Models for Geldart a Particles in Bubbling Fluidized Beds
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031105
.10.1115/1.4031490
10.
Deza
,
M.
,
Franka
,
N. P.
,
Heindel
,
T. J.
, and
Battaglia
,
F.
,
2009
, “
CFD Modeling and X-Ray Imaging of Biomass in a Fluidized Bed
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111303
.10.1115/1.4000257
11.
Formisani
,
B.
,
Girimonte
,
R.
, and
Longo
,
T.
,
2008
, “
The Fluidization Process of Binary Mixtures of Solids: Development of the Approach Based on the Fluidization Velocity Interval
,”
Powder Technol.
,
185
(
2
), pp.
97
108
.10.1016/j.powtec.2007.10.003
12.
Geldart
,
D.
,
1973
, “
Types of Gas Fluidization
,”
Powder Technol.
,
7
(
5
), pp.
285
292
.10.1016/0032-5910(73)80037-3
13.
Chyang
,
C. S.
,
Kuo
,
C. C.
, and
Chen
,
M. Y.
,
1989
, “
Minimum Fluidization Velocity of Binary Mixtures
,”
Can. J. Chem. Eng.
,
67
(
2
), pp.
344
347
.10.1002/cjce.5450670222
14.
Noda
,
K.
,
Uchida
,
S.
,
Makino
,
T.
, and
Kamo
,
H.
,
1986
, “
Minimum Fluidization Velocity of Binary Mixture of Particles With Large Size Ratio
,”
Powder Technol.
,
46
(
2–3
), pp.
149
154
.10.1016/0032-5910(86)80021-3
15.
Di Renzo
,
A.
,
Di Maio
,
F. P.
,
Girimonte
,
R.
, and
Vivacqua
,
V.
,
2015
, “
Segregation Direction Reversal of Gas-Fluidized Biomass/Inert Mixtures – Experiments Based on Particle Segregation Model Predictions
,”
Chem. Eng. J.
,
262
, pp.
727
736
.10.1016/j.cej.2014.10.028
16.
Shao
,
Y.
,
Zhong
,
W.
, and
Yu
,
A.
,
2016
, “
Mixing Behavior of Binary and Multi-Component Mixtures of Particles in Waste Fluidized Beds
,”
Powder Technol.
,
304
, pp.
73
80
.10.1016/j.powtec.2016.06.054
17.
Vasconcelos
,
D.
,
Batalha
,
G.
,
Pereira
,
L. G.
, and
Pires
,
C. A.
,
2018
, “
Fluidization of Binary Mixtures of Sisal Residue and Sand: A New Model for Deriving the Final Fluidization Velocity
,”
Particuology
,
40
, pp.
10
22
.10.1016/j.partic.2017.11.006
18.
Gao
,
X.
,
Yu
,
J.
,
Li
,
C.
,
Panday
,
R.
,
Xu
,
Y.
,
Li
,
T.
,
Ashfaq
,
H.
,
Hughes
,
B.
, and
Rogers
,
W. A.
,
2020
, “
Comprehensive Experimental Investigation on Biomass-Glass Beads Binary Fluidization: A Data Set for CFD Model Validation
,”
AIChE J.
,
66
(
2
), p.
e16843
.10.1002/aic.16843
19.
Alagha
,
M. S.
, and
Szentannai
,
P.
,
2021
, “
Experimentally-Assessed Multi-Phase CFD Modeling of Segregating Gas–Solid Fluidized Beds
,”
Chem. Eng. Res. Des.
,
172
, pp.
215
225
.10.1016/j.cherd.2021.06.004
20.
Anantharaman
,
A.
,
Cocco
,
R. A.
, and
Chew
,
J. W.
,
2018
, “
Evaluation of Correlations for Minimum Fluidization Velocity (Umf) in Gas-Solid Fluidization
,”
Powder Technol.
,
323
, pp.
454
485
.10.1016/j.powtec.2017.10.016
21.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.
22.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academic Press
, Cambridge, MA.
23.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
, “
Mechanics of Fluidization
,”
Chemical Engineering Progress, Symposium Series
, Vol.
62
, pp.
100
111
.
24.
Babu
,
S. P.
,
Shah
,
B.
, and
Talwalkar
,
A.
,
1978
, “
Fluidization Correlations Coal Gasification Mater. - Minimum Fluidization Velocity Fluidized Bed Expansion Ratio
,” AIChE Symp. Ser. (Am. Inst. Chem. Eng.),
74
(
176
), pp.
176
186
.
25.
Bourgeois
,
P.
, and
Grenier
,
P.
,
1968
, “
The Ratio of Terminal Velocity to Minimum Fluidising Velocity for Spherical Particles
,”
Can. J. Chem. Eng.
,
46
(
5
), pp.
325
328
.10.1002/cjce.5450460508
26.
Chitester
,
D. C.
,
Kornosky
,
R. M.
,
Fan
,
L.-S.
, and
Danko
,
J. P.
,
1984
, “
Characteristics of Fluidization at High Pressure
,”
Chem. Eng. Sci.
,
39
(
2
), pp.
253
261
.10.1016/0009-2509(84)80025-1
27.
Grace
,
J. R.
,
1986
,
Handbook of Multiphase Systems
,
Hemisphere Publication
,
Washington, DC
.
28.
Richardson
,
J. F.
, and
da S. Jerónimo
,
M. A.
,
1979
, “
Velocity-Voidage Relations for Sedimentation and Fluidisation
,”
Chem. Eng. Sci.
,
34
(
12
), pp.
1419
1422
.10.1016/0009-2509(79)85167-2
29.
Saxena
,
S. C.
, and
Vogel
,
G. J.
,
1977
, “
Measurement of Incipient Fluidisation Velocities in a Bed of Coarse Dolomite at Temperature and Pressure
,”
Trans. Inst. Chem. Eng.
,
55
(
3
), pp.
184
189
.10.1016/0300-9467(77)80023-3
30.
Thonglimp
,
V.
,
Hiquily
,
N.
, and
Laguerie
,
C.
,
1984
, “
Minimum Fluidization Velocity and Expansion of Mixed Beds of Gas-Fluidized Solid Particles Vitesse minimale de fluidisation et expansion des couches de melanges de particules solides fluidisees par un gaz
,”
Powder Technol.
,
39
(
2
), pp.
223
239
.10.1016/0032-5910(84)85040-8
31.
Zhiping
,
Z.
,
Yongjie
,
N.
, and
Qinggang
,
L.
,
2007
, “
Effect of Pressure on Minimum Fluidization Velocity
,”
J. Therm. Sci.
,
16
(
3
), pp.
264
269
.10.1007/s11630-007-0264-2
32.
Delebarre
,
A.
,
2004
, “
Revisiting the Wen and Yu Equations for Minimum Fluidization Velocity Prediction
,”
Chem. Eng. Res. Des.
,
82
(
5
), pp.
587
590
.10.1205/026387604323142621
33.
Baeyens
,
J.
, and
Geldart
,
D.
,
1974
, “
Predictive Calculations of Flow Parameters in Gas Fluidized Beds and Fluidization Behaviour of Various Powders
,” Chem. Eng. Sci., 29(1), pp.
255
265
.
34.
Bena
,
J.
,
1960
, “Approximate Hydraulic Relationship for Suspended Beds and Hindered Fall,”
Chem. Prum.
,
10
, pp.
285
290
.
35.
Broadhurst
,
T. E.
, and
Becker
,
H. A.
,
1975
, “
Onset of Fluidization and Slugging in Beds of Uniform Particles
,”
AIChE J.
,
21
(
2
), pp.
238
247
.10.1002/aic.690210204
36.
Davies
,
L.
, and
Richardson
,
J. F.
,
1966
, “
Gas Interchange Between Bubbles and Continuous Phase in Fluidised Bed
,”
Inst. Chem. Eng. Trans.
,
44
(
8
), pp.
293
305
.
37.
Doichev
,
K.
, and
Akhmakov
,
N. S.
,
1979
, “
Fluidisation of Polydisperse Systems
,”
Chem. Eng. Sci.
,
34
(
11
), pp.
1357
1359
.10.1016/0009-2509(79)80032-9
38.
Frantz
,
J. F.
,
1966
, “
Minimum Fluidization Velocities and Pressure Drop in Fluidized Beds
,”
Proceedings of Chemical Engineering Progress Symposium
, pp.
21
31
.
39.
Goroshko
,
V. D.
,
Rozembaum
,
R. B.
, and
Todes
,
O. M.
,
1958
,
Izv. Vyssh. Uchebn. Zaved. Neft Gaz.
,
1
(
1
), pp.
125
131
.
40.
Leva
,
M.
,
1959
,
Fluidization
,
McGraw-Hill
,
New York
.
41.
Miller
,
C. O.
, and
Logwinuk
,
A. K.
,
1951
, “
Fluidization Studies of Solid Particles
,”
Ind. Eng. Chem.
,
43
(
5
), pp.
1220
1226
.10.1021/ie50497a059
42.
Pillai
,
B. C.
, and
Raja Rao
,
M.
,
1976
, “
Pressure Drop and Flow Characteristics of Packed Fluidized Systems
,”
Ind. Eng. Chem., Process Des. Dev.
,
15
(
2
), pp.
250
255
.10.1021/i260058a007
43.
Riba
,
J. P.
,
Routie
,
R.
, and
Couderc
,
J. P.
,
1978
, “
Minimum Conditions for Fluidization by a Liquid
,”
Can. J. Chem. Eng.
,
56
(
1
), pp.
26
30
.10.1002/cjce.5450560104
44.
Obata
,
E.
,
Watanabe
,
H.
, and
Endo
,
N.
,
1982
, “
Measurement of Size and Size Distribution of Particles by Fluidization
,”
J. Chem. Eng. Jpn.
,
15
(
1
), pp.
23
28
.10.1252/jcej.15.23
45.
Bilbao
,
R.
,
Lezaun
,
J.
, and
Abanades
,
J. C.
,
1987
, “
Fluidization Velocities of Sand/Straw Binary Mixtures
,”
Powder Technol.
,
52
(
1
), pp.
1
6
.10.1016/0032-5910(87)80001-3
46.
Chiba
,
S.
,
Chiba
,
T.
,
Nienow
,
A. W.
, and
Kobayashi
,
H.
,
1979
, “
The Minimum Fluidisation Velocity, Bed Expansion and Pressure-Drop Profile of Binary Particle Mixtures
,”
Powder Technol.
,
22
(
2
), pp.
255
269
.10.1016/0032-5910(79)80031-5
47.
Nienow
,
A. W.
,
Rowe
,
P. N.
, and
Cheung
,
L. Y. L.
,
1978
, “
A Quantitative Analysis of the Mixing of Two Segregating Powders of Different Density in a Gas-Fluidised Bed
,”
Powder Technol.
,
20
(
1
), pp.
89
97
.10.1016/0032-5910(78)80013-8
48.
Uchida
,
S.
,
Yamada
,
H.
, and
Tada
,
I.
,
1983
, “
Minimum Fluidization Velocity of Binary Mixture
,”
J. Chin. Inst. Chem. Eng.
,
14
(
2
), pp.
257
264
.
49.
Formisani
,
B.
,
Cristofaro
,
G. D.
, and
Girimonte
,
R.
,
2001
, “
A Fundamental Approach to the Phenomenology of Fluidization of Size Segregating Binary Mixtures of Solids
,”
Chem. Eng. Sci.
,
56
(
1
), pp.
109
119
.10.1016/S0009-2509(00)00426-7
50.
Syamlal
,
M.
,
Rogers
,
W.
, and
O'Brien
,
T. J.
,
1993
, “
MFIX Documentation: Theory Guide
,” National Energy Technology Laboratory, Department of Energy, Technical Note Nos. DOE/METC-95/1013 and NTIS/DE95000031.
51.
Estejab
,
B.
,
Nyendu
,
G. C.
,
Agblevor
,
F.
, and
Battaglia
,
F.
,
2017
, “
Coal–Biomass Mixing Characteristics in a Bubbling Fluidized Bed of Geldart a Particles
,”
Chem. Eng. Res. Des.
,
120
, pp.
1
14
.10.1016/j.cherd.2017.01.025
52.
Kanholy
,
S. K.
,
Chodak
,
J.
,
Lattimer
,
B. Y.
, and
Battaglia
,
F.
,
2012
, “
Modeling and Predicting Gas-Solid Fluidized Bed Dynamics to Capture Nonuniform Inlet Conditions
,”
ASME J. Fluids Eng.
,
134
(
11
), p.
111303
.10.1115/1.4007803
53.
Hosseini
,
S. H.
,
Ahmadi
,
G.
,
Rahimi
,
R.
,
Zivdar
,
M.
, and
Esfahany
,
M. N.
,
2010
, “
CFD Studies of Solids Hold-Up Distribution and Circulation Patterns in Gas–Solid Fluidized Beds
,”
Powder Technol.
,
200
(
3
), pp.
202
215
.10.1016/j.powtec.2010.02.024
54.
Li
,
T.
, and
Benyahia
,
S.
,
2013
, “
Evaluation of Wall Boundary Condition Parameters for Gas–Solids Fluidized Bed Simulations
,”
AIChE J.
,
59
(
10
), pp.
3624
3632
.10.1002/aic.14132
55.
Behjat
,
Y.
,
Shahhosseini
,
S.
, and
Hashemabadi
,
S. H.
,
2008
, “
CFD Modeling of Hydrodynamic and Heat Transfer in Fluidized Bed Reactors
,”
Int. Commun. Heat Mass Transfer
,
35
(
3
), pp.
357
368
.10.1016/j.icheatmasstransfer.2007.09.011
56.
Syamlal
,
M.
,
1987
, “
The Particle-Particle Drag Term in a Multiparticle Model of Fluidization
,”
Report Nos. DOE/METC-95/1013 and NTIS/DE95000031
,
National Technical Information Service
,
Springfield, VA
.
57.
Huilin
,
L.
, and
Gidaspow
,
D.
,
2003
, “
Hydrodynamics of Binary Fluidization in a Riser: CFD Simulation Using Two Granular Temperatures
,”
Chem. Eng. Sci.
,
58
(
16
), pp.
3777
3792
.10.1016/S0009-2509(03)00238-0
58.
Syamlal
,
M.
,
1997
, Higher Order Discretization Methods for the Numerical Simulation of Fluidized Beds,
Fluidization and Fluid-Particle Systems Topical Conference
,
AIChE Annual Meeting
,
Los Angeles
, CA.
59.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
, New York.
60.
Syamlal
,
M.
,
1998
, “
MFIX Documentation: Numerical Technique
,” National Energy Technology Laboratory, Department of Energy, Technical Note No. DOE/MC31346-5824.
61.
Johnson
,
P. C.
, and
Jackson
,
R.
,
1987
, “
Frictional-Collisional Constitutive Relations for Granular Materials, With Application to Plane Shearing
,”
J. Fluid Mech.
,
176
, pp.
67
93
.10.1017/S0022112087000570
62.
Kanholy
,
S. K.
,
Estejab
,
B.
, and
Battaglia
,
F.
,
2017
, “
Modeling Multiple Gas Jet Interactions During Fluidization in a Pseudo-2D Bed
,”
Chem. Eng. J.
,
328
, pp.
1009
1021
.10.1016/j.cej.2017.07.116
63.
Volk
,
A.
,
Ghia
,
U.
, and
Jog
,
M. A.
,
2018
, “
How Computational Grid Refinement in Three Dimensions Affects Computational Fluid Dynamics-Discrete Element Method Results for Psuedo-Two-Dimensional Fluidized Gas–Solid Beds
,”
ASME J. Fluids Eng.
,
140
(
12
), p. 121303.10.1115/1.4040763
64.
Franka
,
N. P.
, and
Heindel
,
T. J.
,
2009
, “
Local Time-Averaged Gas Holdup in a Fluidized Bed With Side Air Injection Using X-Ray Computed Tomography
,”
Powder Technol.
,
193
(
1
), pp.
69
78
.10.1016/j.powtec.2009.02.008
65.
Narsimhan
,
G.
,
1965
, “
On a Generalized Expression for Prediction of Minimum Fluidization Velocity
,”
AIChE J.
,
11
(
3
), pp.
550
554
.10.1002/aic.690110335
66.
Geldart
,
D.
,
Harnby
,
N.
, and
Wong
,
A. C.
,
1984
, “
Fluidization of Cohesive Powders
,”
Powder Technol.
,
37
(
1
), pp.
25
37
.10.1016/0032-5910(84)80003-0
67.
Seville
,
J. P. K.
,
Willett
,
C. D.
, and
Knight
,
P. C.
,
2000
, “
Interparticle Forces in Fluidisation: A Review
,”
Powder Technol.
,
113
(
3
), pp.
261
268
.10.1016/S0032-5910(00)00309-0
You do not currently have access to this content.