Abstract

Wire-wrapped hexagonal fuel bundles have been extensively investigated due to their enhanced heat transfer and flow characteristics. Experimental measurements are important to study the thermal-hydraulic behavior of such assemblies and to validate and improve the predictive capabilities of specialized correlations and computational tools. Presently, very limited experimental data is available on the local subchannel pressure drop. Experimental measurements of subchannel pressure drop were conducted in a 61-pin wire-wrapped rod bundle replica, for Reynolds numbers between 190 and 22,000. Specialized instrumented rods were utilized to measure the local pressure drop and estimate the subchannels' friction factor. Three interior subchannels, one edge subchannel, and one corner subchannel were selected to study the effects of location and flow regimes on the friction factor and hydraulic behavior. The transition boundaries from laminar to transitions regimes, and from transition to turbulent regimes were estimated for the subchannels analyzed. The results were found to be in agreement with the predictions of the upgraded Cheng and Todreas detailed correlation (UCTD). The results of the experimental campaign provided a better understanding of the hydraulic behavior of the subchannels of wire-wrapped bundles, in relation to its geometrical features.

References

1.
Schulenberg
,
T.
,
Leung
,
L. K. H.
, and
Oka
,
Y.
,
2014
, “
Review of R&D for Supercritical Water Cooled Reactors
,”
Prog. Nucl. Energy
,
77
, pp.
282
299
.10.1016/j.pnucene.2014.02.021
2.
Rahman
,
M. M.
,
Dongxu
,
J.
,
Jahan
,
N.
,
Salvatores
,
M.
, and
Zhao
,
J.
,
2020
, “
Design Concepts of Supercritical Water-Cooled Reactor (SCWR) and Nuclear Marine Vessel: A Review
,”
Prog. Nucl. Energy
,
124
, p.
103320
.10.1016/j.pnucene.2020.103320
3.
Murase
,
T.
,
Briggs
,
A.
,
Wang
,
H. S.
, and
Rose
,
J. W.
,
2005
, “
Condensation on a Horizontal Wire-Wrapped Tube
,”
ASME J. Heat Transfer – Transaction of the ASME
,
127
(
11
), pp.
1207
1213
.10.1115/1.2039113
4.
Wang
,
H.
,
Bi
,
Q.
, and
Leung
,
L. K. H.
,
2016
, “
Heat Transfer From a 2 X 2 Wire-Wrapped Rod Bundle to Supercritical Pressure Water
,”
Int. J. Heat Fluid Flow
,
97
, pp.
486
501
.10.1016/j.ijheatmasstransfer.2016.02.036
5.
Pramuditya
,
S.
, and
Takahashi
,
M.
,
2013
, “
Thermal–Hydraulic Analysis of Wire-Wrapped SFR Test Subassemblies by Subchannel Analysis Method
,”
Ann. Nucl. Energy
,
54
, pp.
109
119
.10.1016/j.anucene.2012.11.011
6.
Pacio
,
J.
,
Daubner
,
M.
,
Fellmoser
,
F.
,
Litfin
,
K.
, and
Wetzel
,
T.
,
2016
, “
Experimental Study of Heavy-Liquid Metal (LBE) Flow and Heat Transfer Along a Hexagonal 19-Rod Bundle With Wire Spacers
,”
Nucl. Eng. Des.
,
301
, pp.
111
127
.10.1016/j.nucengdes.2016.03.003
7.
Gajapathy
,
R.
,
Velusamy
,
K.
,
Selvaraj
,
P.
,
Chellapandi
,
P.
, and
Chetal
,
S. C.
,
2009
, “
A Comparative CFD Investigation of Helical Wire-Wrapped 7, 19 and 37 Fuel Pin Bundles and Its Extendibility to 217 Pin Bundle
,”
Nucl. Eng. Des.
,
239
(
11
), pp.
2279
2292
.10.1016/j.nucengdes.2009.06.014
8.
Brockmeyer
,
L.
,
Carasik
,
L. B.
,
Merzari
,
E.
, and
Hassan
,
Y. A.
,
2017
, “
Numerical Simulations for Determination of Minimum Representative Bundle Size in Wire Wrapped Tube Bundles
,”
Nucl. Eng. Des.
,
322
, pp.
577
590
.10.1016/j.nucengdes.2017.06.038
9.
Song
,
M.
,
Jeong
,
J. H.
, and
Kim
,
E. S.
,
2020
, “
Investigation on Subchannel Flow Distribution in Wire-Wrapped 37 and 61-Pin Bundle Using Computational Fluid Dynamics
,”
Nucl. Eng. Des.
,
370
(
1–11
), p.
110904
.10.1016/j.nucengdes.2020.110904
10.
Chen
,
S. K.
,
Todreas
,
N. E.
, and
Nguyen
,
N. T.
,
2014
, “
Evaluation of Existing Correlations for the Prediction of Pressure Drop in Wire-Wrapped Hexagonal Array Pin Bundles
,”
Nucl. Eng. Des.
,
267
, pp.
109
131
.10.1016/j.nucengdes.2013.12.003
11.
Choi
,
S. K.
,
Choi
,
I. K.
,
Nam
,
H. Y.
,
Choi
,
J. H.
, and
Choi
,
H. K.
,
2003
, “
Measurement of Pressure Drop in a Full-Scale Fuel Assembly of a Liquid Metal Reactor
,”
ASME J. Pressure Vessel Technol.
,
125
(
2
), pp.
233
238
.10.1115/1.1565076
12.
Padmakumar
,
G.
,
Velusamy
,
K.
,
Prasad
,
B. V. S. S.
, and
Rajan
,
K. K.
,
2017
, “
Hydraulic Characteristics of a Fast Reactor Fuel Subassembly: An Experimental Investigation
,”
Ann. Nucl. Energy
,
102
, pp.
255
267
.10.1016/j.anucene.2016.12.025
13.
Vaghetto
,
R.
,
Jones
,
P.
,
Goth
,
N.
,
Childs
,
M.
,
Lee
,
S.
,
Nguyen
,
D. T.
, and
Hassan
,
Y. A.
,
2018
, “
Pressure Measurements in a Wire-Wrapped 61-Pin Hexagonal Fuel Bundle
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
031104
.10.1115/1.4038086
14.
Berthoux
,
M.
, and
Cadiou
,
T.
,
2010
, “
The Thermal Hydraulics in a Rod Bundle Representative of the Start-Up Core of the ALLEGRO Gas Cooled Fast Reactor - Experimental and Numerical Approaches
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3372
3386
.10.1016/j.nucengdes.2010.07.009
15.
Chenu
,
A.
,
Mikityuk
,
K.
, and
Chawla
,
R.
,
2011
, “
Pressure Drop Modeling and Comparisons With Experiments for Single- and Two-Phase Sodium Flow
,”
Nucl. Eng. Des.
,
241
(
9
), pp.
3898
3909
.10.1016/j.nucengdes.2011.07.009
16.
Cheng
,
S. K.
, and
Todreas
,
N. E.
,
1986
, “
Hydrodynamic Models and Correlations for Bare and Wire-Wrapped Hexagonal Rod Bundles -Bundle Friction Factors, Subchannel Friction Factors and Mixing Parameters
,”
Nucl. Eng. Des.
,
92
(
2
), pp.
227
251
.10.1016/0029-5493(86)90249-9
17.
Chen
,
S. K.
,
Chen
,
Y. M.
, and
Todreas
,
N. E.
,
2018
, “
The Upgraded Cheng and Todreas Correlation for Pressure Drop in Hexagonal Wire-Wrapped Rod Bundles
,”
Nucl. Eng. Des.
,
335
, pp.
356
373
.10.1016/j.nucengdes.2018.05.010
18.
Palomino
,
L. M.
, and
El-Genk
,
M. S.
,
2019
, “
CFD and Thermal-Hydraulics Analyses of Liquid Sodium Heat Transfer in 19-Rod Hexagonal Bundles With Scalloped Walls
,”
Int. J. Heat Mass Transfer
,
144
, p.
118637
10.1016/j.ijheatmasstransfer.2019.118637
19.
Jeong
,
J. H.
,
Song
,
M. S.
, and
Lee
,
K. L.
,
2017
, “
RANS Based CFD Methodology for a Real Scale 217-Pin Wire-Wrapped Fuel Assembly of KAERI PGSFR
,”
Nucl. Eng. Des.
,
313
, pp.
470
485
.10.1016/j.nucengdes.2017.01.007
20.
Childs
,
M.
,
Vaghetto
,
R.
,
Jones
,
P.
,
Goth
,
N.
, and
Hassan
,
Y. A.
,
2021
, “
Experimental Determination and Analysis of the Transverse Pressure Difference in a Wire-Wrapped Rod Bundle
,”
Int. J. Heat Mass Transfer
,
170
, p.
120958
10.1016/j.ijheatmasstransfer.2021.120958
21.
Chun
,
M. H.
, and
Seo
,
K. W.
,
2001
, “
An Experimental Study and Assessment of Existing Friction Factor Correlations for Wire-Wrapped Fuel Assemblies
,”
Ann. Nucl. Energy
,
28
(
17
), pp.
1683
1695
.10.1016/S0306-4549(01)00023-8
22.
Chang
,
S. K.
,
Euh
,
D. J.
,
Choi
,
H. S.
,
Kim
,
H.
,
Choi
,
S. R.
, and
Lee
,
H. Y.
,
2016
, “
Flow Distribution and Pressure Loss in Subchannels of a Wire-Wrapped 37-Pin Rod Bundle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Technol.
,
48
(
2
), pp.
376
385
.10.1016/j.net.2015.12.013
23.
Chang
,
S.-K.
,
Euh
,
D.-J.
,
Kim
,
S.
,
Choi
,
H. S.
,
Kim
,
H.
,
Ko
,
Y. J.
,
Choi
,
S. R.
, and
Lee
,
H.-Y.
,
2017
, “
Experimental Study of the Flow Characteristics in an SFR Type 61-Pin Rod Bundle Using Iso-Kinetic Sampling Method
,”
Ann. Nucl. Energy
,
106
, pp.
160
169
.10.1016/j.anucene.2017.03.024
24.
Liang
,
Y.
,
Zhang
,
D.
,
Chen
,
Y.
,
Zhang
,
K.
,
Tian
,
W.
,
Qiu
,
S.
, and
Su
,
G.
,
2020
, “
An Experiment Study of Pressure Drop and Flow Distribution in Subchannels of a 37-Pin Wire-Wrapped Rod Bundle
,”
Appl. Therm. Eng.
,
174
, p.
115283
10.1016/j.applthermaleng.2020.115283
25.
Lorenz
,
J. J.
, and
Ginberg
,
T.
,
1977
, “
Coolant Mixing and Subchannel Velocities in an LMFBR Fuel Assembly
,”
Nucl. Eng. Des.
,
40
(
2
), pp.
315
326
.10.1016/0029-5493(77)90042-5
26.
Chiu
,
C.
,
Rohsenow
,
W. M.
, and
Todreas
,
N. E.
,
1980
, “
Turbulent Flow Split Model and Supporting Experiments for Wire-Wrapped Core Assemblies
,”
Nucl. Technol.
,
50
(
1
), pp.
40
52
.10.13182/NT80-A17068
27.
Nguyen
,
T.
,
Goth
,
N.
,
Jones
,
P.
,
Vaghetto
,
R.
, and
Hassan
,
Y. A.
,
2018
, “
Stereoscopic PIV Measurements of Near-Wall Flow in a Tightly Packed Rod Bundle With Wire Spacers
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
420
435
.10.1016/j.expthermflusci.2017.11.009
28.
Nguyen
,
T.
,
Goth
,
N.
,
Jones
,
P.
,
Lee
,
S.
,
Vaghetto
,
R.
, and
Hassan
,
Y. A.
,
2017
, “
PIV Measurements of Turbulent Flows in a 61-Pin Wire-Wrapped Hexagonal Fuel Bundle
,”
Int. J. Heat Fluid Flow
,
65
, pp.
47
59
.10.1016/j.ijheatfluidflow.2017.03.007
29.
Goth
,
N.
,
Jones
,
P.
,
Nguyen
,
D. T.
,
Vaghetto
,
R.
,
Hassan
,
Y. A.
,
Salpeter
,
N.
, and
Merzari
,
E.
,
2018
, “
PTV/PIV Measurements of Turbulent Flows in Interior Subchannels of a 61-Pin Wire-Wrapped Hexagonal Fuel Bundle
,”
Int. J. Heat Fluid Flow
,
71
, pp.
295
304
.10.1016/j.ijheatfluidflow.2018.03.021
30.
Goth
,
N.
,
Jones
,
P.
,
Nguyen
,
D. T.
,
Vaghetto
,
R.
,
Hassan
,
Y. A.
,
Obabko
,
A.
,
Merzari
,
E.
, and
Fischer
,
P. F.
,
2018
, “
Comparison of Experimental and Simulation Results on Interior Subchannels of a 61-Pin Wire-Wrapped Hexagonal Fuel Bundle
,”
Nucl. Eng. Des.
,
338
pp.
130
136
.10.1016/j.nucengdes.2018.08.002
31.
Wagner
,
W.
, and
Pruß
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.10.1063/1.1461829
32.
Darcy
,
H. P. G.
,
1857
,
Recherches Expérimentales Relatives Au Mouvement De L'Eau Dans Les Tuyaux
,
Mallet-Bachelier
,
Paris, France
.
33.
Brown
,
G. O.
,
2002
, “
The History of the Darcy–Weisbach Equation for Pipe Flow Resistance
,”
Environmental and Water Resources History
,
American Society of Civil Engineers
, Washington, DC, pp.
34
43
.
34.
Omega Engineering
,
2010
,
User's Guide: FPT-6100, FPT-6200 and FPT-6300 High Accuracy Pitot Tubes
,
Omega Engineering
, Norwalk, CT.
35.
Childs
,
M.
,
Muyshondt
,
R.
,
Vaghetto
,
R.
,
Nguyen
,
D. T.
, and
Hassan
,
Y. A.
,
2020
, “
Experimental Study on the Effect of Localized Blockages on the Friction Factor of a 61-Pin Wire-Wrapped Bundle
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111211
10.1115/1.4048140
You do not currently have access to this content.