Abstract

In this study, a linear stability principle is utilized to investigate the Rayleigh–Taylor stability at the power-law viscoelastic fluid/inviscid gas interface. The power-law viscoelastic fluid lies above the gas and heat is transferred from the upper phase to the lower phase and vice versa. The simplified formulation for heat transport derived by Hsieh (1972, “The Effect of Heat and Mass on Rayleigh Taylor Instability,” ASME J. Basic Eng., 94(1), pp. 156–160) is utilized here. In the perturbed state, the mathematical equations are linearized and the well-known normal mode procedure is employed to examine the stability. An implicit dispersion relationship in the terms of growth rate parameter is achieved and solved through the Newton–Raphson method. The various plots are made to study the behavior of flow variables on the stability of the interface. It is found that the instability of the interface decreases if the transfer of heat is increased. The power-law fluid interface is more stable than the inviscid fluid interface while it is more unstable than the corresponding Newtonian fluid interface. The high power-law index makes the system more stable while a denser power-law fluid reduces the interfacial stability. The consistency coefficient and viscosity of power-law fluid both have a stabilizing character.

References

1.
Rayleigh
,
L.
,
1890
,
Scientific Papers
, Vol.
ii
, Cambridge University Press,
Cambridge, UK
, pp.
200
207
.
2.
Taylor
,
G. I.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes
,”
Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci.
,
201
(
1065
), pp.
192
196
.10.1098/rspa.1950.0052
3.
Lewis
,
D. J.
,
1950
, “
The Instability of Liquid Surface When Accelerated in a Direction Perpendicular to Their Planes, II
,”
Proc. R. Soc. Lond. A
,
202
(
1068
), pp.
81
96
.10.1098/rspa.1950.0086
4.
Emmons
,
H. W.
,
Chang
,
C. T.
, and
Watson
,
B. C.
,
1960
, “
Taylor Instability of Finite Surface Waves
,”
J. Fluid Mech.
,
7
(
2
), pp.
177
193
.10.1017/S0022112060001420
5.
Sharp
,
D. H.
,
1984
, “
An Overview of Rayleigh-Taylor Instability
,”
Phys. D.
,
12
(
1–3
), pp.
3
18
.10.1016/0167-2789(84)90510-4
6.
Jacobs
,
J. W.
, and
Catton
,
I.
,
1988
, “
Three-Dimensional Rayleigh-Taylor Instability. Part 1: Weakly Non-Linear Theory
,”
J. Fluid Mech.
,
187
, pp.
329
352
.10.1017/S002211208800045X
7.
Hsieh
,
D. Y.
,
1972
, “
The Effect of Heat and Mass on Rayleigh Taylor Instability
,”
ASME J. Basic Eng.
,
94
(
1
), pp.
156
160
.10.1115/1.3425353
8.
Dhir
,
V. K.
, and
Lienhard
,
J. H.
,
1973
, “
Taylor Stability of Viscous Fluid With Application to Film Boiling
,”
Int. J. Heat Mass Transfer
,
16
(
11
), pp.
2097
2106
.10.1016/0017-9310(73)90112-9
9.
Hsieh
,
D. Y.
,
1978
, “
Interfacial Stability With Mass and Heat Transfer
,”
Phys. Fluids
,
21
(
5
), pp.
745
748
.10.1063/1.862292
10.
Ho
,
S. P.
,
1980
, “
Linear Rayleigh-Taylor Stability of Viscous Fluids With Mass and Heat Transfer
,”
J. Fluid Mech.
,
101
(
1
), pp.
111
127
.10.1017/S0022112080001565
11.
Khodaparast
,
K. A.
,
Kawaji
,
M.
, and
Antar
,
B. N.
,
1995
, “
The Rayleigh-Taylor and Kelvin-Helmholtz Stability of a Viscous Liquid-Vapor Interface With Heat and Mass Transfer
,”
Phys. Fluids
,
7
(
2
), pp.
359
364
.10.1063/1.868633
12.
Awasthi
,
M. K.
, and
Agrawal
,
G. S.
,
2012
, “
Viscous Potential Flow Analysis of the Rayleigh-Taylor Instability With Heat and Mass Transfer
,”
Int. J. Appl. Math Mech.
,
7
(
12
), pp.
73
84
.
13.
Awasthi
,
M. K.
,
2013
, “
Nonlinear Analysis of Rayleigh-Taylor Instability of Cylindrical Flow With Heat and Mass Transfer
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061205
.10.1115/1.4024001
14.
Awasthi
,
M. K.
,
2014
, “
Study on Capillary Instability With Heat and Mass Transfer Through Porous Media: Effect of Irrotational Viscous Pressure
,”
ASME J. Fluids Eng.
,
136
(
10
), p.
101204
.10.1115/1.4027546
15.
Awasthi
,
M. K.
,
2014
, “
Study of Kelvin-Helmholtz Instability With Heat and Mass Transfer
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121202
.10.1115/1.4027599
16.
Awasthi
,
M. K.
,
2019
, “
Rayleigh-Taylor Instability of Swirling Annular Layer With Mass Transfer
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071202
.10.1115/1.4042174
17.
Moatimid
,
G. M.
,
2005
, “
Nonlinear Kelvin-Helmholtz Instability of Two Miscible Ferrofluids in Porous Media
,”
Z. Angew. Math. Phys.
,
57
(
1
), pp.
133
159
.10.1007/s00033-005-2067-1
18.
Moatimid
,
G. M.
,
Allah
,
M. H.
, and
Hassan
,
M. A.
,
2013
, “
Kelvin-Helmholtz Instability for Flow in Porous Media Under the Influence of Oblique Magnetic Fields: A Viscous Potential Flow Analysis
,”
Phys. Plasmas
,
20
(
10
), p.
102111
.10.1063/1.4825146
19.
El-Sayed
,
M. F.
,
Moatimid
,
G. M.
,
Elsabaa
,
F. M. F.
, and
Amer
,
M. F. E.
,
2017
, “
Three-Dimensional Instability of Non-Newtonian Viscoelastic Liquid Jets Issued Into a Streaming Viscous (or Inviscid) Gas
,”
Int. J. Fluid Mech. Res.
,
44
(
2
), pp.
93
113
.10.1615/InterJFluidMechRes.2017016533
20.
El-Sayed
,
M. F.
,
Moatimid
,
G. M.
, and
Metwaly
,
T.
,
2018
, “
Three-Dimensional Nonlinear Instability Analysis of Electroconvulsive Finite Dielectric Fluids
,”
Int. J. Pure Appl. Math.
,
118
(
4
), pp.
895
920
.10.12732/ijpam.v118i4.6
21.
Moatimid
,
G. M.
, and
Mostapha
,
D. R.
,
2019
, “
Nonlinear Electrohydrodynamic Instability Through Two Jets of an Oldroydian Viscoelastic Fluids With a Porous Medium Under the Influence of Electric Field
,”
AIP Adv.
,
9
(
5
), p.
055302
.10.1063/1.5080700
22.
Moatimid
,
G. M.
,
El-Dib
,
Y. O.
, and
Zekry
,
M. H.
,
2020
, “
The Nonlinear Instability of a Cylindrical Interface Between Two hydromagneticDarcian Flows
,”
Arab. J. Sci. Eng.
,
45
(
1
), pp.
391
340
.10.1007/s13369-019-04192-z
23.
El-Dib
,
Y. O.
,
Moatimid
,
G. M.
,
Mady
,
A. A.
, and
Zekry
,
M. H.
,
2022
, “
Nonlinear Hydromagnetic Instability of Oscillatory Rotating Rigid-Fluid Columns
,”
Ind. J. Phys.
,
96
(
3
), pp.
839
854
.10.1007/s12648-021-02022-3
24.
Sharma
,
R. C.
,
1976
, “
Effect of Rotation on the Thermal Instability of a Viscoelastic Fluid
,”
Acta Phys. Hung.
,
40
(
1
), pp.
11
17
.10.1007/BF03157148
25.
Sharma
,
R. C.
, and
Sharma
,
K. C.
,
1978
, “
Rayleigh-Taylor Instability of Two Viscoelastic Superposed Fluids
,”
Acta Phys.
,
45
(
3
), pp.
213
220
.10.1007/BF03157252
26.
Fu
,
Q. F.
,
Deng
,
X. D.
, and
Yang
,
L. J.
,
2019
, “
Kelvin-Helmholtz Instability Analysis of Confined Oldroyd-B Liquid Film With Heat and Mass Transfer
,”
J. Non-Newtonian Fluid Mech.
,
267
, pp.
28
34
.10.1016/j.jnnfm.2019.03.009
27.
Moatimid
,
G. M.
, and
Zekry
,
M. H.
,
2020
, “
Nonlinear Stability of Electro-Visco-Elastic Walters' B Type in Porous Media
,”
Microsyst. Technol.
,
26
(
6
), pp.
2013
2027
.10.1007/s00542-020-04752-6
28.
Moatimid
,
G. M.
,
Mostapha
,
D. R.
, and
Zekry
,
M. H.
,
2021
, “
Nonlinear EHD Stability of Cylindrical Walters B' Fluids: Effect of an Axial Time-Periodic Electric Field
,”
Chin. J. Phys.
,
74
, pp.
106
128
.10.1016/j.cjph.2021.08.023
29.
Moatimid
,
G. M.
,
Zekry
,
M. H.
, and
Nada
,
S. G.
,
2022
, “
Nonlinear EHD Instability of Cylindrical Interface Between Two Walters B Fluids in Porous Media
,”
J. Porous Media
,
25
(
3
), pp.
11
34
.10.1615/JPorMedia.2021035657
30.
Andersson
,
H. I.
, and
Irgens
,
F.
,
1990
, “
Film Flow of Power-Law Fluids
,”
Encyclopedia Fluid Mech., Polym. Flow Eng.
,
9
, pp.
617
648
.10.4236/ajcm.2011.12013
31.
Chojnacki
,
T. K.
, and
Feikema
,
A. D.
,
1997
, “
Study of Non-Newtonian Liquid Sheets Formed by Impinging Jets (in Gelled Bipropellants)
,”
Proceedings of the 33rd Joint Propulsion Conference and Exhibit
, Seattle, WA, July 6–9, p.
3335
.10.2514/6.1997-3335
32.
Hwang
,
C.-C.
,
Chen
,
J.-L.
,
Wang
,
J.-S.
, and
Lin
,
J.-S.
,
1994
, “
Linear Stability of Power-Law Liquid Film Flow Down an Inclined Plane
,”
J. Phys. D Appl. Phys.
,
27
(
11
), pp.
2297
2301
.10.1088/0022-3727/27/11/008
33.
Wang
,
X.-T.
,
Ning
,
Z.
, and
,
M.
,
2019
, “
Linear Instability of a Charged Non-Newtonian Liquid Jet Under an Axial Electric Field
,”
J. Appl. Phys.
,
126
(
13
), p.
135301
.10.1063/1.5110631
34.
Guo
,
J. P.
,
Wang
,
Y. B.
,
Bai
,
F. Q.
, and
Du
,
Q.
,
2020
, “
Unstable Breakup of a Power-Law Liquid Fuel Jet in the Presence of a Gas Crossflow
,”
Fuel
,
263
, p.
116606
.10.1016/j.fuel.2019.116606
35.
Guo
,
J. P.
,
Wang
,
Y. B.
,
Bai
,
F. Q.
,
Zhang
,
F.
, and
Du
,
Q.
,
2018
, “
Effects of Asymmetric Gas Distribution on the Instability of a Plane Power-Law Liquid Jet
,”
Energies
,
11
(
7
), p.
1854
.10.3390/en11071854
36.
Wang
,
X.-T.
,
Ning
,
Z.
, and
,
M.
,
2020
, “
Temporal Instability Analysis of a Confined Non-Newtonian Liquid Jet With Heat and Mass Transfer
,”
Eur. J. Mech. B Fluids
,
84
, pp.
350
356
.10.1016/j.euromechflu.2020.07.005
37.
Awasthi
,
M. K.
,
Shukla
,
A. K.
, and
Yadav
,
D.
,
2021
, “
Rayleigh Instability of Power-Law Viscoelastic Liquid With Heat and Mass Transfer
,”
Int. Comm. Heat Mass Transfer
,
129
, p.
105657
.10.1016/j.icheatmasstransfer.2021.105657
You do not currently have access to this content.