Abstract

Oscillating motion, an effective way to harvest energy, has gradually become a hotspot in bionic motion research in recent years. Means of improving the energy-extraction efficiency of a flapping foil harvester have long been a focus of researchers. This paper proposes a new flapping foil harvester with circulation control and explores the effects of different parameters on its energy-extraction capacity to improve efficiency and achieve lowest cost. Setting the injection ports on the upper and lower surfaces near the trailing edge of the foil and implementing injection control during motion, the effects of the location of the injection port, pitching amplitude, momentum coefficient, reduced frequency, and jet mode on the circulation control flapping foil are systematically investigated under the condition of a Reynolds number of 13,800. The results show that circulation control can enhance the energy-extraction efficiency of a flapping foil across a wide range of parameters, in which the location of the injection port and momentum coefficient have the most obvious influence on efficiency, followed by pitching amplitude and reduced frequency. In addition, the jet mode is a crucial factor affecting net efficiency. Relative to the constant mode, the triangular mode of circulation control has the lowest energy consumption, and the net energy-extraction efficiency reaches up to 38.77% under a reduced frequency of 0.12, which is 22.24% higher than that of the plain flapping foil.

References

1.
Yan
,
Y.
,
Avital
,
E.
,
Williams
,
J.
, and
Cui
,
J.
,
2019
, “
Performance Improvements for a Vertical Axis Wind Turbine by Means of Gurney Flap
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021205
.10.1115/1.4044995
2.
Triantafyllou
,
M. S.
,
Techet
,
A. H.
, and
Hover
,
F. S.
,
2004
, “
Review of Experimental Work in Biomimetic Foils
,”
J. Ocean. Eng.
,
29
(
3
), pp.
585
594
.10.1109/JOE.2004.833216
3.
Boudis
,
A.
,
Bayeul-Lainé
,
A. C.
,
Benzaoui
,
A.
,
Oualli
,
H.
,
Guerri
,
O.
, and
Coutier-Delgosha
,
O.
,
2019
, “
Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil
,”
ASME J. Fluids Eng.
,
141
(
4
), p.
041106
.10.1115/1.4042175
4.
Hover
,
F. S.
,
Haugsdal
,
Ø.
, and
Triantafyllou
,
M. S.
,
2004
, “
Effect of Angle of Attack Profiles in Flapping Foil Propulsion
,”
J. Fluid Struct.
,
19
(
1
), pp.
37
47
.10.1016/j.jfluidstructs.2003.10.003
5.
Tuncer
,
I.
, and
Platzer
,
M.
,
1996
, “
Thrust Generation Due to Airfoil Flapping
,”
AIAA J.
,
34
(
2
), pp.
324
331
.10.2514/3.13067
6.
Tuncer
,
I.
, and
Kaya
,
M.
,
2003
, “
Thrust Generation Caused by Flapping Airfoils in a Biplane Configuration
,”
J. Aircr.
,
40
(
3
), pp.
509
515
.10.2514/2.3124
7.
McKinney
,
W.
, and
DeLaurier
,
J.
,
1981
, “
The Wingmill: An Oscillating-Wing Windmill
,”
J. Energy
,
5
(
2
), pp.
80
87
.10.2514/3.62510
8.
Kinsey
,
T.
, and
Dumas
,
G.
,
2008
, “
Parametric Study of an Oscillating Airfoil in Power Extraction Regime
,”
AIAA J.
,
46
(
6
), pp.
1318
1330
.10.2514/1.26253
9.
Simpson
,
B. J.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2008
, “
Experiments in Direct Energy Extraction Through Flapping Foils
,”
The Eighteenth International Offshore and Polar Engineering Conference
, Vancouver, BC, Canada, July 6–11, Paper No. ISOPE-2008-FSH-03.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE08/All-ISOPE08/ISOPE-I-08-040/10604
10.
Xiao
,
Q.
, and
Zhu
,
Q.
,
2014
, “
A Review on Flow Energy Harvesters Based on Flapping Foils
,”
J. Fluid Struct.
,
46
, pp.
174
191
.10.1016/j.jfluidstructs.2014.01.002
11.
Wang
,
Y.
,
Huang
,
D.
,
Han
,
W.
,
YangOu
,
C.
, and
Zheng
,
Z.
,
2017
, “
Research on the Mechanism of Power Extraction Performance for Flapping Hydrofoils
,”
Ocean Eng.
,
129
, pp.
626
636
.10.1016/j.oceaneng.2016.10.024
12.
Lu
,
K.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2014
, “
Nonsinusoidal Motion Effects on Energy Extraction Performance of a Flapping Foil
,”
Renewable Energy
,
64
, pp.
283
293
.10.1016/j.renene.2013.11.053
13.
Xiao
,
Q.
,
Liao
,
W.
,
Yang
,
S.
, and
Peng
,
Y.
,
2012
, “
How Motion Trajectory Affects Energy Extraction Performance of a Biomimic Energy Generator With an Oscillating Foil
,”
Renewable Energy
,
37
(
1
), pp.
61
75
.10.1016/j.renene.2011.05.029
14.
Wang
,
Y.
,
Sun
,
X.
,
Huang
,
D.
, and
Zheng
,
Z.
,
2016
, “
Numerical Investigation on Energy Extraction of Flapping Hydrofoils With Different Series Foil Shapes
,”
Energy
,
112
, pp.
1153
1168
.10.1016/j.energy.2016.06.092
15.
Zhu
,
Q.
, and
Peng
,
Z.
,
2009
, “
Mode Coupling and Flow Energy Harvesting by a Flapping Foil
,”
Phys. Fluids
,
21
(
3
), pp.
585
552
.10.1063/1.3092484
16.
Zhu
,
Q.
,
2011
, “
Optimal Frequency for Flow Energy Harvesting of a Flapping Foil
,”
J. Fluid Mech.
,
675
, pp.
495
517
.10.1017/S0022112011000334
17.
Zhu
,
B.
,
Han
,
W.
,
Sun
,
X.
,
Wang
,
Y.
,
Cao
,
Y.
,
Wu
,
G.
,
Huang
,
D.
, and
Zheng
,
Z.
,
2015
, “
Research on Energy Extraction Characteristics of an Adaptive Deformation Oscillating-Wing
,”
J. Renewable Sustainable Energy
,
7
(
2
), p.
023101
.10.1063/1.4913957
18.
Le
,
T.
, and
Ko
,
J.
,
2015
, “
Effect of Hydrofoil Flexibility on the Power Extraction of a Flapping Tidal Generator Via Two- and Three-Dimensional Flow Simulations
,”
Renewable Energy
,
80
, pp.
275
285
.10.1016/j.renene.2015.01.068
19.
Wu
,
J.
,
Shu
,
C.
,
Zhao
,
N.
, and
Tian
,
F.
,
2015
, “
Numerical Study on the Power Extraction Performance of a Flapping Foil With a Flexible Tail
,”
Phys. Fluids
,
27
(
1
), p.
013602
.10.1063/1.4905537
20.
Hoke
,
C. M.
,
Young
,
J.
, and
Lai
,
J. C. S.
,
2015
, “
Effects of Time-Varying Camber Deformation on Flapping Foil Propulsion and Power Extraction
,”
J. Fluid Struct.
,
56
, pp.
152
176
.10.1016/j.jfluidstructs.2015.05.001
21.
Zhu
,
B.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
Energy Harvesting Properties of a Flapping Wing With an Adaptive Gurney Flap
,”
Energy
,
152
, pp.
119
128
.10.1016/j.energy.2018.03.142
22.
Hill
,
H. E.
,
Ng
,
W. F.
,
Vlachos
,
P. P.
,
Guillot
,
S. A.
, and
Car
,
D.
,
2007
, “
2D Parametric Study Using CFD of a Circulation Control Inlet Guide Vane
,”
ASME
Paper No. GT2007-28058.10.1115/GT2007-28058
23.
Fischer
,
S.
,
Saathoff
,
H.
, and
Radespiel
,
R.
,
2008
, “
Numerical and Experimental Investigation on a Low-Speed Compressor Cascade With Circulation Control
,”
ASME
Paper No. GT2008-50302.10.1115/GT2008-50302
24.
Guendogdu
,
Y.
,
Vorreiter
,
A.
, and
Seume
,
J. R.
,
2008
, “
Design of a Low Solidity Flow-Controlled Stator With Coanda Surface in a High Speed Compressor
,”
ASME
Paper No. GT2008-51180.10.1115/GT2008-51180
25.
Zhu
,
Z.
, and
Wu
,
Z.
,
2016
, “
Study of the Circulation Control Technology
,”
Acta Aeron. Astronaut. Sin.
,
37
, pp.
411
428
.10.7527/S1000-6893.2015.0282
26.
Englar
,
R.
,
2000
, “
Circulation Control Pneumatic Aerodynamics: Blown Force and Moment Augmentation and Modification—Past, Present and Future
,”
AIAA J.
,
12
, p.
2541
.10.2514/6.2000-2541
27.
Wood
,
N.
, and
Nielsen
,
J.
,
1985
, “
Circulation Control Airfoils: Past, Present, Future
,”
AIAA J.
,
85
, p.
0204
.10.2514/6.1985-204
28.
Gorle
,
J. M. R.
,
Chatellier
,
L.
,
Pons
,
F.
, and
Ba
,
M.
,
2019
, “
Modulated Circulation Control Around the Blades of a Vertical Axis Hydrokinetic Turbine for Flow Control and Improved Performance
,”
Renewable Sustainable Energy Rev.
,
105
, pp.
363
377
.10.1016/j.rser.2019.02.007
29.
Shires
,
A.
, and
Kourkoulis
,
V.
,
2013
, “
Application of Circulation Controlled Blades for Vertical Axis Wind Turbines
,”
Energies
,
6
(
8
), pp.
3744
3763
.10.3390/en6083744
30.
Johnson
,
S. J.
,
Dam
,
C. V.
, and
Berg
,
D. E.
,
2008
, “
Active Load Control Techniques for Wind Turbines
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2008-4809.
You do not currently have access to this content.