Abstract

This paper focuses on the comparative electrokinetic micromixing of non-Newtonian fluid in cylindrical microchannels with surface potential heterogeneity due to sudden constriction/expansion. In numerical simulations, the rheology of the aqueous solution is considered to follow power-law characteristic. Based on the Poisson–Nernst–Planck model, the simulations are performed to investigate the mixing efficiency and pressure drop for constricted and expanded configurations over a wide range of the flow behavior index, potential patch strength, and geometric parameters. The results show that, irrespective of geometric configurations, the mixing efficiency can be improved significantly by increasing the flow behavior index, geometric parameters, and the overpotential patch strength. In addition, it is also revealed that the constricted geometry yields better mixing as compared to the other configuration, but the average pressure drop shows reverse characteristics. Thus, a parametric relationship is tried to be established between mixing efficiency and pressure drop for both these configurations to propose an effective and efficient micromixer, which can produce maximum possible mixing efficiency with minimum pressure drop.

References

1.
Fair
,
R. B.
,
2007
, “
Digital Microfluidics: Is a True Lab-on-a-Chip Possible?
,”
Microfluid. Nanofluid.
,
3
(
3
), pp.
245
281
.10.1007/s10404-007-0161-8
2.
Whitesides
,
G.
,
2014
, “
The Lab Finally Comes to the Chip!
,”
Lab Chip
,
14
(
17
), pp.
3125
3126
.10.1039/C4LC90072C
3.
Chin
,
C. D.
,
Linder
,
V.
, and
Sia
,
S. K.
,
2007
, “
Lab-on-a-Chip Devices for Global Health: Past Studies and Future Opportunities
,”
Lab Chip
,
7
(
1
), pp.
41
57
.10.1039/B611455E
4.
Wu
,
J.
,
Kodzius
,
R.
,
Cao
,
W.
, and
Wen
,
W.
,
2014
, “
Extraction, Amplification and Detection of DNA in Microfluidic Chip-Based Assays
,”
Microchim. Acta
,
181
(
13–14
), pp.
1611
1631
.10.1007/s00604-013-1140-2
5.
Panda
,
S.
, and
Pyarajan
,
S.
,
2015
, “
Lab-on-Chip Devices for Protein Analysis
,”
Encyclopedia of Microfluidics and Nanofluidics
, Springer, Berlin, pp.
1562
1570
.10.1007/978-1-4614-5491-5
6.
Hattersley
,
S. M.
,
Greenman
,
J.
, and
Haswell
,
S. J.
,
2013
, “
The Application of Microfluidic Devices for Viral Diagnosis in Developing Countries
,”
Microfluidic Diagnostics
,
Springer
, Berlin, pp.
285
303
.
7.
Czilwik
,
G.
,
Messinger
,
T.
,
Strohmeier
,
O.
,
Wadle
,
S.
,
von Stetten
,
F.
,
Paust
,
N.
,
Roth
,
G.
,
Zengerle
,
R.
,
Saarinen
,
P.
,
Niittymäki
,
J.
,
McAllister
,
K.
,
Sheils
,
O.
,
O'Leary
,
J.
, and
Mark
,
D.
,
2015
, “
Rapid and Fully Automated Bacterial Pathogen Detection on a Centrifugal-Microfluidic Lab disk Using Highly Sensitive Nested PCR With Integrated Sample Preparation
,”
Lab Chip
,
15
(
18
), pp.
3749
3759
.10.1039/C5LC00591D
8.
Chen
,
H.
, and
Fan
,
Z. H.
,
2009
, “
Two-Dimensional Protein Separation in Microfluidic Devices
,”
Electrophoresis
,
30
(
5
), pp.
758
765
.10.1002/elps.200800566
9.
Lee
,
C.-Y.
,
Wang
,
W.-T.
,
Liu
,
C.-C.
, and
Fu
,
L.-M.
,
2016
, “
Passive Mixers in Microfluidic Systems: A Review
,”
Chem. Eng. J.
,
288
, pp.
146
160
.10.1016/j.cej.2015.10.122
10.
Lee
,
C.-Y.
,
Chang
,
C.-L.
,
Wang
,
Y.-N.
, and
Fu
,
L.-M.
,
2011
, “
Microfluidic Mixing: A Review
,”
Int. J. Mol. Sci.
,
12
(
5
), pp.
3263
3287
.10.3390/ijms12053263
11.
Pham
,
N.
,
Radajewski
,
D.
,
Round
,
A.
,
Brennich
,
M.
,
Pernot
,
P.
,
Biscans
,
B.
,
Bonneté
,
F.
, and
Teychené
,
S.
,
2017
, “
Coupling High Throughput Microfluidics and Small-Angle X-Ray Scattering to Study Protein Crystallization From Solution
,”
Anal. Chem.
,
89
(
4
), pp.
2282
2287
.10.1021/acs.analchem.6b03492
12.
Jeong
,
G. S.
,
Chung
,
S.
,
Kim
,
C.-B.
, and
Lee
,
S.-H.
,
2010
, “
Applications of Micromixing Technology
,”
Analyst
,
135
(
3
), pp.
460
473
.10.1039/b921430e
13.
Kockmann
,
N.
,
Kiefer
,
T.
,
Engler
,
M.
, and
Woias
,
P.
,
2006
, “
Convective Mixing and Chemical Reactions in Microchannels With High Flow Rates
,”
Sens. Actuators, B
,
117
(
2
), pp.
495
508
.10.1016/j.snb.2006.01.004
14.
Sackmann
,
E. K.
,
Fulton
,
A. L.
, and
Beebe
,
D. J.
,
2014
, “
The Present and Future Role of Microfluidics in Biomedical Research
,”
Nature
,
507
(
7491
), pp.
181
189
.10.1038/nature13118
15.
Shen
,
H.-H.
,
Fan
,
S.-K.
,
Kim
,
C.-J.
, and
Yao
,
D.-J.
,
2014
, “
EWOD Microfluidic Systems for Biomedical Applications
,”
Microfluid. Nanofluid.
,
16
(
5
), pp.
965
987
.10.1007/s10404-014-1386-y
16.
Narla
,
V.
, and
Tripathi
,
D.
,
2019
, “
Electroosmosis Modulated Transient Blood Flow in Curved Microvessels: Study of a Mathematical Model
,”
Microvasc. Res.
,
123
, pp.
25
34
.10.1016/j.mvr.2018.11.012
17.
Tripathi
,
D.
,
Jhorar
,
R.
,
Bég
,
O. A.
, and
Shaw
,
S.
,
2018
, “
Electroosmosis Modulated Peristaltic Biorheological Flow Through an Asymmetric Microchannel: Mathematical Model
,”
Meccanica
,
53
(
8
), pp.
2079
2090
.10.1007/s11012-017-0795-x
18.
Ranjit
,
N.
,
Shit
,
G.
, and
Tripathi
,
D.
,
2019
, “
Entropy Generation and Joule Heating of Two Layered Electroosmotic Flow in the Peristaltically Induced Micro-Channel
,”
Int. J. Mech. Sci.
,
153
, pp.
430
444
.10.1016/j.ijmecsci.2019.02.022
19.
Mondal
,
A.
, and
Shit
,
G.
,
2018
, “
Electro-Osmotic Flow and Heat Transfer in a Slowly Varying Asymmetric Micro-Channel With Joule Heating Effects
,”
Fluid Dyn. Res.
,
50
(
6
), p.
065502
.10.1088/1873-7005/aad590
20.
Shit
,
G.
, and
Majee
,
S.
,
2018
, “
Magnetic Field Interaction With Blood Flow and Heat Transfer Through Diseased Artery Having Abdominal Aortic Aneurysm
,”
Eur. J. Mech.-B
,
71
, pp.
1
14
.10.1016/j.euromechflu.2018.03.010
21.
Shit
,
G.
, and
Majee
,
S.
,
2018
, “
Computational Modeling of MHD Flow of Blood and Heat Transfer Enhancement in a Slowly Varying Arterial Segment
,”
Int. J. Heat Fluid Flow
,
70
, pp.
237
246
.10.1016/j.ijheatfluidflow.2018.02.016
22.
Capretto
,
L.
,
Cheng
,
W.
,
Hill
,
M.
, and
Zhang
,
X.
,
2011
, “
Micromixing Within Microfluidic Devices
,”
Microfluidics
,
Springer
, Berlin, pp.
27
68
.
23.
Beyssen
,
D.
,
Le Brizoual
,
L.
,
Elmazria
,
O.
, and
Alnot
,
P.
,
2006
, “
Microfluidic Device Based on Surface Acoustic Wave
,”
Sens. Actuators, B
,
118
(
1–2
), pp.
380
385
.10.1016/j.snb.2006.04.084
24.
Alizadeh
,
A.
,
Zhang
,
L.
, and
Wang
,
M.
,
2014
, “
Mixing Enhancement of Low-Reynolds Electro-Osmotic Flows in Microchannels With Temperature-Patterned Walls
,”
J. Colloid Interface Sci.
,
431
, pp.
50
63
.10.1016/j.jcis.2014.05.070
25.
Glasgow
,
I.
, and
Aubry
,
N.
,
2003
, “
Enhancement of Microfluidic Mixing Using Time Pulsing
,”
Lab Chip
,
3
(
2
), pp.
114
120
.10.1039/B302569A
26.
Yang
,
Z.
,
Matsumoto
,
S.
,
Goto
,
H.
,
Matsumoto
,
M.
, and
Maeda
,
R.
,
2001
, “
Ultrasonic Micromixer for Microfluidic Systems
,”
Sens. Actuators, A
,
93
(
3
), pp.
266
272
.10.1016/S0924-4247(01)00654-9
27.
Oddy
,
M.
,
Santiago
,
J.
, and
Mikkelsen
,
J.
,
2001
, “
Electrokinetic Instability Micromixing
,”
Anal. Chem.
,
73
(
24
), pp.
5822
5832
.10.1021/ac0155411
28.
Medina
,
I.
,
Toledo
,
M.
,
Méndez
,
F.
, and
Bautista
,
O.
,
2018
, “
Pulsatile Electroosmotic Flow in a Microchannel With Asymmetric Wall Zeta Potentials and Its Effect on Mass Transport Enhancement and Mixing
,”
Chem. Eng. Sci.
,
184
, pp.
259
272
.10.1016/j.ces.2018.03.051
29.
Gao
,
X.
, and
Li
,
Y.
,
2018
, “
Biofluid Pumping and Mixing by an AC Electrothermal Micropump Embedded With a Spiral Microelectrode Pair in a Cylindrical Microchannel
,”
Electrophoresis
,
39
(
24
), pp.
3156
3170
.10.1002/elps.201800162
30.
West
,
J.
,
Karamata
,
B.
,
Lillis
,
B.
,
Gleeson
,
J. P.
,
Alderman
,
J.
,
Collins
,
J. K.
,
Lane
,
W.
,
Mathewson
,
A.
, and
Berney
,
H.
,
2002
, “
Application of Magnetohydrodynamic Actuation to Continuous Flow Chemistry
,”
Lab Chip
,
2
(
4
), pp.
224
230
.10.1039/b206756k
31.
Cai
,
G.
,
Xue
,
L.
,
Zhang
,
H.
, and
Lin
,
J.
,
2017
, “
A Review on Micromixers
,”
Micromachines
,
8
(
9
), p.
274
.10.3390/mi8090274
32.
Mariotti
,
A.
,
Galletti
,
C.
,
Mauri
,
R.
,
Salvetti
,
M. V.
, and
Brunazzi
,
E.
,
2018
, “
Steady and Unsteady Regimes in a T-Shaped Micro-Mixer: Synergic Experimental and Numerical Investigation
,”
Chem. Eng. J.
,
341
, pp.
414
431
.10.1016/j.cej.2018.01.108
33.
Hsieh
,
S.-S.
,
Lin
,
J.-W.
, and
Chen
,
J.-H.
,
2013
, “
Mixing Efficiency of Y-Type Micromixers With Different Angles
,”
Int. J. Heat Fluid Flow
,
44
, pp.
130
139
.10.1016/j.ijheatfluidflow.2013.05.011
34.
Chen
,
X.
, and
Shen
,
J.
,
2017
, “
Numerical Analysis of Mixing Behaviors of Two Types of E-Shape Micromixers
,”
Int. J. Heat Mass Transfer
,
106
, pp.
593
600
.10.1016/j.ijheatmasstransfer.2016.09.034
35.
Nimafar
,
M.
,
Viktorov
,
V.
, and
Martinelli
,
M.
,
2012
, “
Experimental Comparative Mixing Performance of Passive Micromixers With H-Shaped Sub-Channels
,”
Chem. Eng. Sci.
,
76
, pp.
37
44
.10.1016/j.ces.2012.03.036
36.
Borgohain
,
P.
,
Arumughan
,
J.
,
Dalal
,
A.
, and
Natarajan
,
G.
,
2018
, “
Design and Performance of a Three-Dimensional Micromixer With Curved Ribs
,”
Chem. Eng. Res. Des.
,
136
, pp.
761
775
.10.1016/j.cherd.2018.06.027
37.
Wu
,
Z.
, and
Li
,
D.
,
2008
, “
Mixing and Flow Regulating by Induced-Charge Electrokinetic Flow in a Microchannel With a Pair of Conducting Triangle Hurdles
,”
Microfluid. Nanofluid.
,
5
(
1
), pp.
65
76
.10.1007/s10404-007-0227-7
38.
Banerjee
,
A.
,
Nayak
,
A.
,
Haque
,
A.
, and
Weigand
,
B.
,
2018
, “
Induced Mixing Electrokinetics in a Charged Corrugated Nano-Channel: Towards a Controlled Ionic Transport
,”
Microfluid. Nanofluid.
,
22
(
10
), p.
115
.10.1007/s10404-018-2128-3
39.
Qaderi
,
A.
,
Jamaati
,
J.
, and
Bahiraei
,
M.
,
2019
, “
CFD Simulation of Combined Electroosmotic-Pressure Driven Micro-Mixing in a Microchannel Equipped With Triangular Hurdle and Zeta-Potential Heterogeneity
,”
Chem. Eng. Sci.
,
199
, pp.
463
477
.10.1016/j.ces.2019.01.034
40.
Alam
,
A.
, and
Kim
,
K.-Y.
,
2012
, “
Analysis of Mixing in a Curved Microchannel With Rectangular Grooves
,”
Chem. Eng. J.
,
181–182
, pp.
708
716
. 10.1016/j.cej.2011.12.076
41.
Wang
,
L.
,
Liu
,
D.
,
Wang
,
X.
, and
Han
,
X.
,
2012
, “
Mixing Enhancement of Novel Passive Microfluidic Mixers With Cylindrical Grooves
,”
Chem. Eng. Sci.
,
81
, pp.
157
163
.10.1016/j.ces.2012.07.004
42.
Afzal
,
A.
, and
Kim
,
K.-Y.
,
2012
, “
Passive Split and Recombination Micromixer With Convergent–Divergent Walls
,”
Chem. Eng. J.
,
203
, pp.
182
192
.10.1016/j.cej.2012.06.111
43.
Basati
,
Y.
,
Mohammadipour
,
O. R.
, and
Niazmand
,
H.
,
2019
, “
Numerical Investigation and Simultaneous Optimization of Geometry and Zeta-Potential in Electroosmotic Mixing Flows
,”
Int. J. Heat Mass Transfer
,
133
, pp.
786
799
.10.1016/j.ijheatmasstransfer.2018.12.159
44.
The
,
H. L.
,
Ta
,
B. Q.
,
Thanh
,
H. L.
,
Dong
,
T.
,
Thoi
,
T. N.
, and
Karlsen
,
F.
,
2015
, “
Geometric Effects on Mixing Performance in a Novel Passive Micromixer with Trapezoidal-Zigzag Channels
,”
J. Micromech. Microeng.
,
25
(
9
), p.
094004
10.1088/0960-1317/25/9/094004
45.
Chen
,
X.
,
Li
,
T.
,
Zeng
,
H.
,
Hu
,
Z.
, and
Fu
,
B.
,
2016
, “
Numerical and Experimental Investigation on Micromixers With Serpentine Microchannels
,”
Int. J. Heat Mass Transfer
,
98
, pp.
131
140
.10.1016/j.ijheatmasstransfer.2016.03.041
46.
Hossain
,
S.
,
Lee
,
I.
,
Kim
,
S. M.
, and
Kim
,
K.-Y.
,
2017
, “
A Micromixer With Two-Layer Serpentine Crossing Channels Having Excellent Mixing Performance at Low Reynolds Numbers
,”
Chem. Eng. J.
,
327
, pp.
268
277
.10.1016/j.cej.2017.06.106
47.
Banerjee
,
A.
,
Nayak
,
A.
, and
Weigand
,
B.
,
2019
, “
Enhanced Mixing and Flow Reversal in a Modulated Microchannel
,”
Int. J. Mech. Sci.
,
155
, pp.
430
439
.10.1016/j.ijmecsci.2019.02.023
48.
Xie
,
F.
,
Wang
,
Y.
,
Wang
,
W.
,
Li
,
Z.
,
Yossifon
,
G.
, and
Chang
,
H.-C.
,
2010
, “
Preparation of Rhombus-Shaped Micro/Nanofluidic Channels With Dimensions Ranging From Hundred Nanometers to Several Micrometers
,”
J. Nanosci. Nanotechnol.
,
10
(
11
), pp.
7277
7281
.10.1166/jnn.2010.2842
49.
Lei
,
Y.
,
Wang
,
W.
,
Wu
,
W.
, and
Li
,
Z.
,
2010
, “
Nanofluidic Diode in a Suspended Nanoparticle Crystal
,”
Appl. Phys. Lett.
,
96
(
26
), p.
263102
.10.1063/1.3456563
50.
Erickson
,
D.
, and
Li
,
D.
,
2002
, “
Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing
,”
Langmuir
,
18
(
5
), pp.
1883
1892
.10.1021/la015646z
51.
Bhattacharyya
,
S.
, and
Bera
,
S.
,
2013
, “
Nonlinear Electroosmosis Pressure-Driven Flow in a Wide Microchannel With Patchwise Surface Heterogeneity
,”
ASME J. Fluids Eng.
,
135
(
2
), p.
021303
.10.1115/1.4023446
52.
Nayak
,
A.
,
2014
, “
Analysis of Mixing for Electroosmotic Flow in Micro/Nano Channels With Heterogeneous Surface Potential
,”
Int. J. Heat Mass Transfer
,
75
, pp.
135
144
.10.1016/j.ijheatmasstransfer.2014.03.057
53.
D'Avino
,
G.
,
Greco
,
F.
, and
Maffettone
,
P. L.
,
2017
, “
Particle Migration Due to Viscoelasticity of the Suspending Liquid and Its Relevance in Microfluidic Devices
,”
Annu. Rev. Fluid Mech.
,
49
, pp.
341
360
.10.1146/annurev-fluid-010816-060150
54.
Lu
,
X.
,
Liu
,
C.
,
Hu
,
G.
, and
Xuan
,
X.
,
2017
, “
Particle Manipulations in Non-Newtonian Microfluidics: A Review
,”
J. Colloid Interface Sci.
,
500
, pp.
182
201
.10.1016/j.jcis.2017.04.019
55.
Zhao
,
C.
, and
Yang
,
C.
,
2013
, “
Electrokinetics of Non-Newtonian Fluids: A Review
,”
Adv. Colloid Interface Sci.
,
201
, pp.
94
108
.10.1016/j.cis.2013.09.001
56.
Bingham
,
E. C.
,
1922
,
Fluidity and Plasticity
,
2
,
McGraw-Hill
, New York.
57.
Ng
,
C.-O.
,
2013
, “
Combined Pressure-Driven and Electroosmotic Flow of Casson Fluid Through a Slit Microchannel
,”
J. Non-Newtonian Fluid Mech.
,
198
, pp.
1
9
.10.1016/j.jnnfm.2013.03.003
58.
Chakraborty
,
S.
,
2007
, “
Electroosmotically Driven Capillary Transport of Typical Non-Newtonian Biofluids in Rectangular Microchannels
,”
Anal. Chim. Acta
,
605
(
2
), pp.
175
184
.10.1016/j.aca.2007.10.049
59.
Martínez
,
L.
,
Bautista
,
O.
,
Escandón
,
J.
, and
Méndez
,
F.
,
2016
, “
Electroosmotic Flow of a Phan-Thien–Tanner Fluid in a Wavy-Wall Microchannel
,”
Colloids Surf., A
,
498
, pp.
7
19
.10.1016/j.colsurfa.2016.02.036
60.
Herschel
,
W.
, and
Bulkley
,
R.
,
1926
, “
Measurement of Consistency as Applied to Rubber-Benzene Solutions
,”
Am. Soc. Test Proc.
,
26
, pp.
621
633
.
61.
Ko
,
C.-H.
,
Li
,
D.
,
Malekanfard
,
A.
,
Wang
,
Y.-N.
,
Fu
,
L.-M.
, and
Xuan
,
X.
,
2019
, “
Electroosmotic Flow of Non-Newtonian Fluids in a Constriction Microchannel
,”
Electrophoresis
,
40
(
10
), pp.
1387
1394
.10.1002/elps.201800315
62.
Li
,
X.-X.
,
Yin
,
Z.
,
Jian
,
Y.-J.
,
Chang
,
L.
,
Su
,
J.
, and
Liu
,
Q.-S.
,
2012
, “
Transient Electro-Osmotic Flow of Generalized Maxwell Fluids Through a Microchannel
,”
J. Non-Newtonian Fluid Mech.
,
187
, pp.
43
47
.10.1016/j.jnnfm.2012.09.005
63.
Das
,
S.
, and
Chakraborty
,
S.
,
2006
, “
Analytical Solutions for Velocity, Temperature and Concentration Distribution in Electroosmotic Microchannel Flows of a Non-Newtonian Bio-Fluid
,”
Anal. Chim. Acta
,
559
(
1
), pp.
15
24
.10.1016/j.aca.2005.11.046
64.
Zhao
,
C.
,
Zholkovskij
,
E.
,
Masliyah
,
J. H.
, and
Yang
,
C.
,
2008
, “
Analysis of Electroosmotic Flow of Power-Law Fluids in a Slit Microchannel
,”
J. Colloid Interface Sci.
,
326
(
2
), pp.
503
510
.10.1016/j.jcis.2008.06.028
65.
Zhao
,
C.
, and
Yang
,
C.
,
2013
, “
Electroosmotic Flows of Non-Newtonian Power-Law Fluids in a Cylindrical Microchannel
,”
Electrophoresis
,
34
(
5
), pp.
662
667
.10.1002/elps.201200507
66.
Zhao
,
C.
, and
Yang
,
C.
,
2012
, “
Advances in Electrokinetics and Their Applications in Micro/Nano Fluidics
,”
Microfluid. Nanofluidics
,
13
(
2
), pp.
179
203
.10.1007/s10404-012-0971-1
67.
Yang
,
P.-W.
,
Chang
,
Y.-J.
, and
Huang
,
H.-F.
,
2014
, “
Wall Polymer Depletion Effects on Electrokinetic Diffusioosmosis of Power-Law Liquids in Cylindrical Capillaries
,”
Microfluid. Nanofluidics
,
17
(
1
), pp.
149
165
.10.1007/s10404-013-1294-6
68.
Zhu
,
Q.
,
Deng
,
S.
, and
Chen
,
Y.
,
2014
, “
Periodical Pressure-Driven Electrokinetic Flow of Power-Law Fluids Through a Rectangular Microchannel
,”
J. Non-Newtonian Fluid Mech.
,
203
, pp.
38
50
.10.1016/j.jnnfm.2013.10.003
69.
Vasu
,
N.
, and
De
,
S.
,
2010
, “
Electroosmotic Flow of Power-Law Fluids at High Zeta Potentials
,”
Colloids Surf., A
,
368
(
1–3
), pp.
44
52
.10.1016/j.colsurfa.2010.07.014
70.
Babaie
,
A.
,
Sadeghi
,
A.
, and
Saidi
,
M. H.
,
2011
, “
Combined Electroosmotically and Pressure Driven Flow of Power-Law Fluids in a Slit Microchannel
,”
J. Non-Newtonian Fluid Mech.
,
166
(
14–15
), pp.
792
798
.10.1016/j.jnnfm.2011.04.012
71.
Tang
,
G.
,
Ye
,
P.
, and
Tao
,
W.
,
2010
, “
Electroviscous Effect on Non-Newtonian Fluid Flow in Microchannels
,”
J. Non-Newtonian Fluid Mech.
,
165
(
7–8
), pp.
435
440
.10.1016/j.jnnfm.2010.01.026
72.
Ng
,
C.-O.
, and
Qi
,
C.
,
2014
, “
Electroosmotic Flow of a Power-Law Fluid in a Non-Uniform Microchannel
,”
J. Non-Newtonian Fluid Mech.
,
208
, pp.
118
125
.10.1016/j.jnnfm.2014.04.008
73.
Nekoubin
,
N.
,
2018
, “
Electroosmotic Flow of Power-Law Fluids in Curved Rectangular Microchannel With High Zeta Potentials
,”
J. Non-Newtonian Fluid Mech.
,
260
, pp.
54
68
.10.1016/j.jnnfm.2018.06.005
74.
Hadigol
,
M.
,
Nosrati
,
R.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2011
, “
Numerical Study of Electroosmotic Micromixing of Non-Newtonian Fluids
,”
J. Non-Newtonian Fluid Mech.
,
166
(
17–18
), pp.
965
971
.10.1016/j.jnnfm.2011.05.001
75.
Hadigol
,
M.
,
Nosrati
,
R.
, and
Raisee
,
M.
,
2011
, “
Numerical Analysis of Mixed Electroosmotic/Pressure Driven Flow of Power-Law Fluids in Microchannels and Micropumps
,”
Colloids Surf., A
,
374
(
1–3
), pp.
142
153
.10.1016/j.colsurfa.2010.10.045
76.
Bag
,
N.
, and
Bhattacharyya
,
S.
,
2018
, “
Electroosmotic Flow of a Non-Newtonian Fluid in a Microchannel With Heterogeneous Surface Potential
,”
J. Non-Newtonian Fluid Mech.
,
259
, pp.
48
60
.10.1016/j.jnnfm.2018.05.005
77.
Cho
,
C.-C.
,
Chen
,
C.-L.
, and
Chen
,
C.-K.
,
2012
, “
Mixing Enhancement of Electrokinetically-Driven Non-Newtonian Fluids in Microchannel With Patterned Blocks
,”
Chem. Eng. J.
,
191
, pp.
132
140
.10.1016/j.cej.2012.02.083
78.
Cho
,
C.-C.
,
Chen
,
C.-L.
, and
Chen
,
C.-K.
,
2012
, “
Mixing of Non-Newtonian Fluids in Wavy Serpentine Microchannel Using Electrokinetically Driven Flow
,”
Electrophoresis
,
33
(
5
), pp.
743
750
.10.1002/elps.201100496
79.
Cho
,
C.-C.
,
Chen
,
C.-L.
, and
Chen
,
C.-K.
,
2012
, “
Flow Characteristics and Mixing Performance of Electrokinetically Driven Non-Newtonian Fluid in Contraction–Expansion Microchannel
,”
Rheol. Acta
,
51
(
10
), pp.
925
935
.10.1007/s00397-012-0650-x
80.
Cho
,
C.-C.
,
Chen
,
C.-L.
, and
Chen
,
C.-K.
,
2012
, “
Electrokinetically-Driven Non-Newtonian Fluid Flow in Rough Microchannel With Complex-Wavy Surface
,”
J. Non-Newtonian Fluid Mech.
,
173–174
, pp.
13
20
.10.1016/j.jnnfm.2012.01.012
81.
Banerjee
,
A.
, and
Nayak
,
A.
,
2019
, “
Influence of Varying Zeta Potential on Non-Newtonian Flow Mixing in a Wavy Patterned Microchannel
,”
J. Non-Newtonian Fluid Mech.
,
269
, p.
17
.10.1016/j.jnnfm.2019.05.007
82.
Masliyah
,
J. H.
, and
Bhattacharjee
,
S.
,
2006
,
Electrokinetic and Colloid Transport Phenomena
,
Wiley
, Hoboken, NJ.
83.
Chung
,
C.-K.
, and
Shih
,
T.
,
2007
, “
A Rhombic Micromixer With Asymmetrical Flow for Enhancing Mixing
,”
J. Micromech. Microeng.
,
17
(
12
), p.
2495
.10.1088/0960-1317/17/12/016
84.
Goswami
,
P.
,
Chakraborty
,
J.
,
Bandopadhyay
,
A.
, and
Chakraborty
,
S.
,
2016
, “
Electrokinetically Modulated Peristaltic Transport of Power-Law Fluids
,”
Microvasc. Res.
,
103
, pp.
41
54
.10.1016/j.mvr.2015.10.004
85.
Bird
,
R. B.
,
Stewart
,
W.
, and
Lightfoot
,
E.
,
2006
,
Transport Phenomena
, 2nd ed., Wiley, Hoboken, NJ.
86.
Anderson
,
J.
, and
Wendt
,
J.
,
1995
,
Computational Fluid Dynamics
, Vol.
206
, Springer, Berlin, p.
332
.
87.
Fletcher
,
C. A.
,
2012
,
Computational Techniques for Fluid Dynamics 2: Specific Techniques for Different Flow Categories
,
Springer Science & Business Media
, Berlin.
88.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.10.1016/0045-7825(79)90034-3
89.
Patankar
,
S.
,
2018
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
, Boca Raton, FL.
90.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2003
, “
Liquid Flow in Microchannels: Experimental Observations and Computational Analyses of Microfluidics Effects
,”
J. Micromech. Microeng.
,
13
(
5
), p.
568
.10.1088/0960-1317/13/5/307
91.
Lu
,
Y.
,
Tang
,
G.
, and
Tao
,
W.
,
2016
, “
Experimental Study of Microchannel Flow for Non-Newtonian Fluid in the Presence of Salt
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
91
99
.10.1016/j.expthermflusci.2015.11.021
92.
Nezhad
,
J. R.
, and
Mirbozorgi
,
S. A.
,
2018
, “
An Immersed Boundary-Lattice Boltzmann Method to Simulate Chaotic Micromixers With Baffles
,”
Comput. Fluids
,
167
, pp.
206
214
.10.1016/j.compfluid.2018.02.031
93.
Solehati
,
N.
,
Bae
,
J.
, and
Sasmito
,
A. P.
,
2014
, “
Numerical Investigation of Mixing Performance in Microchannel T-Junction With Wavy Structure
,”
Comput. Fluids
,
96
, pp.
10
19
.10.1016/j.compfluid.2014.03.003
94.
Lin
,
Y.
,
Yu
,
X.
,
Wang
,
Z.
,
Tu
,
S.-T.
, and
Wang
,
Z.
,
2011
, “
Design and Evaluation of an Easily Fabricated Micromixer With Three-Dimensional Periodic Perturbation
,”
Chem. Eng. J.
,
171
(
1
), pp.
291
300
.10.1016/j.cej.2011.04.003
You do not currently have access to this content.