The parallel plate flow chamber (PPFC) has gained popularity due to its applications in fields such as biological tissue engineering. However, most of the studies using PPFC refer to theoretical relations for estimating the wall shear stress (WSS) and, hence, the accuracy of such quantifications remains elusive for anything other than steady laminar flow. In the current study, a laser Doppler velocimetry (LDV) method was used to quantify the flow in a PPFC (H = 1.8 mm × W = 17.5 mm, Dh = 3.26 mm, aspect ratio = 9.72) under steady Re = 990, laminar pulsatile (carotid Re0-mean = 282 as well as a non-zero-mean sinusoidal Re0-mean = 45 pulse) and low-Re turbulent Re = 2750 flow conditions. A mini-LDV probe was applied, and the absolute location of the LDV measuring volume with the respect to the wall was determined using a signal monitoring technique with uncertainties being around ±27 μm. The uniformity of the flow across the span of the channel, as well as the WSS assessment for all the flow conditions, was measured with the uncertainties all being less than 16%. At least two points within the viscous sublayer of the low-Re turbulent flow were measured (with the y+ for the first point < 3) and the WSS was determined using two methods with the differences between the two methods being within 5%. This paper for the first time presents the experimental determination of WSS using LDV in a small-scale PPFC under various flow conditions, the challenges associated with each condition, and a comparison between the cases. The present data will be useful for those conducting biological or numerical modeling studies using such devices.

References

1.
Dewey
,
C. F.
, and
Bussolari
,
S. R.
,
1981
, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
ASME J. Biomech. Eng.
,
103
(
3
), pp.
177
185
.
2.
Bussolari
,
S. R.
,
Dewey
,
F.
, and
Gimbrone
,
M. A.
,
1982
, “
Apparatus for Subjecting Living Cells to Fluid Shear Stress
,”
Rev. Sci. Instrum.
,
53
(
12
), pp.
1851
1854
.
3.
Nerem
,
R. M.
,
Levesque
,
M. J.
, and
Cornhill
,
J. F.
,
1981
, “
Vascular Endothelial Morphology as an Indicator of the Pattern of Blood Flow
,”
ASME J. Biomech. Eng.
,
103
(
3
), pp.
172
176
.
4.
Chien
,
S.
,
2007
, “
Mechanotransduction and Endothelial Cell Homeostasis: The Wisdom of the Cell
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
(
3
), pp.
1209
1224
.
5.
Chiu
,
J.-J.
, and
Chien
,
S.
,
2011
, “
Effects of Disturbed Flow on Vascular Endothelium; Pathophysiological Basis and Clinical Perspectives
,”
Physiol. Rev.
,
91
(
1
), pp.
327
387
.
6.
Blackman
,
B. R.
,
Barbee
,
K. A.
, and
Thibault
,
L. E.
,
2000
, “
In Vitro Cell Shearing Device to Investigate the Dynamic Response of Cells in a Controlled Hydrodynamic Environment
,”
Ann. Biomed. Eng.
,
28
(
4
), pp.
363
372
.
7.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
, Chap. 4.
8.
Truskey
,
G. A.
,
Yuan
,
F.
, and
Katz
,
D. F.
,
2009
,
Transport Phenomena in Biological Systems
, Prentice Hall, Upper Saddle River, NJ.
9.
Bacabaca
,
R. G.
,
Smith
,
T. H.
,
Cowinc
,
S. C.
,
Van Lanoona
,
J. J.
,
Nieuwstadtd
,
F. T.
,
Heethaarb
,
R.
, and
Klein-Nulend
,
J.
,
2005
, “
Dynamic Shear Stress in Parallel-Plate Flow Chambers
,”
J. Biomech.
,
38
(
1
), pp.
159
167
.
10.
Koo
,
M.-A.
,
Kang
,
J.-K.
,
Lee
,
M. H.
,
Seo
,
H. J.
,
Kwon
,
B.-J.
,
You
,
K. E.
,
Kim
,
M. S.
,
Kim
,
D.
, and
Park
,
J.-C.
,
2014
, “
Stimulated Migration and Penetration of Vascular Endothelial Cells Into Poly (L-Lactic Acid) Scaffolds Under Flow Conditions
,”
Biomater. Res.
,
18
(
7
), pp.
1
8
.https://biomaterialsres.biomedcentral.com/articles/10.1186/2055-7124-18-7
11.
Davies
,
P. F.
,
Remuzzi
,
A.
,
Gordon
,
E. J.
,
Dewey
,
C. F.
, and
Gimbrone
,
A. M.
,
1986
, “
Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vivo
,”
Proc. Natl. Acad. Sci. U. S. A.
,
83
(
7
), pp.
2114
2117
.
12.
Langlois
,
W. E.
, and
Deville
,
M.
,
2014
,
Slow Viscous Flow
,
Springer International Publishing
,
Gewerbestrasse, Switzerland
.
13.
Barber, K., Pinero, A., and Truskey, G. A.,
1998
, “
Effects of Recirculating Flow on U-937 Cell Adhesion to Human Vein Endothelial Cells
,”
Am. J. Physiol. Heart Circ. Physiol.
,
275
(
2
), pp. H591–H599.
14.
Ghalichi
,
F.
,
Deng
,
X.
,
De Champlain
,
A.
,
Douville
,
Y.
,
King
,
M.
, and
Guidoin
,
R.
,
1998
, “
Low Reynolds Number Turbulence Modeling of Blood Flow in Arterial Stenoses
,”
Biorheology
,
34
(
4–5
), pp.
281
294
.
15.
Scotti
,
A.
, and
Piomelli
,
U.
,
2001
, “
Numerical Simulation of Pulsating Turbulent Channel Flow
,”
Phys. Fluids
,
13
(
5
), pp.
1367
1383
.
16.
Misra
,
J. C.
,
Pal
,
B.
,
Pal
,
A.
, and
Gupta
,
A. S.
,
2001
, “
Oscillatory Entry Flow in a Plane Channel With Pulsating Walls
,”
Int. J. Non Linear Mech.
,
36
(
5
), pp.
731
741
.
17.
Seddighi
,
M.
,
He
,
S.
,
Vardy
,
A. E.
, and
Orlandi
,
P.
,
2014
, “
Direct Numerical Simulation of an Accelerating Channel Flow
,”
Flow Turbul. Combust.
,
92
(
1–2
), pp.
473
502
.
18.
Valencia
,
A.
, and
Hinojosa
,
L.
,
1997
, “
Numerical Solutions of Pulsating Flow and Heat Transfer Characteristics in a Channel With a Backward-Facing Step
,”
Heat Mass Transfer
,
32
(
3
), pp.
143
148
.
19.
Mittal
,
R.
,
Simmons
,
S. P.
, and
Najjar
,
F.
,
2003
, “
Numerical Study of Pulsatile Flow in a Constricted Channel
,”
J. Fluid Mech.
,
485
, pp.
337
378
.
20.
Tutty
,
O.
,
1992
, “
Pulsatile Flow in a Constricted Channel
,”
ASME J. Biomech. Eng.
,
114
(
1
), pp.
50
61
.
21.
Piomelli
,
U.
, and
Liu
,
J.
,
1994
, “
Large-Eddy Simulation of Rotating Channels Flows Using a Localized Dynamic Model
,”
Phys. Fluids
,
7
(
4
), pp.
839
847
.
22.
Beratlis
,
N.
,
Balaras
,
E.
,
Parvinian
,
B.
, and
Kiger
,
K.
,
2005
, “
A Numerical and Experimental Investigation of Transitional Pulsatile Flow in a Stenosed Channel
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1147
1157
.
23.
Paul
,
M.
, and
Molla
,
M.
,
2012
, “
Investigation of Physiological Pulsatile Flow in a Model Arterial Stenosis Using Large-Eddy and Direct Numerical Simulations
,”
Appl. Math. Model.
,
36
(
9
), pp.
4393
4413
.
24.
Nabavi
,
M.
, and
Siddiqui
,
K.
,
2010
, “
A Critical Review on Advanced Velocity Measurement Techniques in Pulsating Flows
,”
Meas. Sci. Technol.
,
21
(
4
), pp.
1
19
.
25.
Peterson
,
S. D.
, and
Plesniak
,
M. W.
,
2008
, “
The Influence of Inlet Velocity Profile and Secondary Flow on Pulsatile Flow in a Model Artery With Stenosis
,”
J. Fluid Mech.
,
616
, pp.
263
301
.
26.
Daidzic
,
N. E.
,
2014
, “
Application of Womersley to Reconstruct Pulsatile Flow From Doppler Ultrasound Measurements
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
041102
.
27.
Plesniak
,
M. W.
, and
Bulusu
,
K. V.
,
2016
, “
Morphology of Secondary Flows in a Curved Pipe With Pulsatile Inflow
,”
ASME J. Fluids Eng.
,
138
(
10
), p.
101203
.
28.
Colonia
,
S.
, and
Romano
,
G. P.
,
2014
, “
Steady and Pulsating Turbulent Flows in Complex Pipe Geometries
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111201
.
29.
Peterson
,
S. D.
,
Chaung
,
H.
, and
Wereley
,
S. T.
,
2008
, “
Three-Dimensional Particle Tracking Using Micro-Particle Image Velocimetry Hardware
,”
Meas. Sci. Technol.
,
19
(
11
), p.
115406
.
30.
Teuffl
,
M.
,
Trimis
,
D.
,
Lohmoller
,
A.
,
Takedat
,
Y.
, and
Durst
,
F.
,
1992
, “
Determination of Velocity Profiles in Oscillating Pipe-Flows by Using Laser Doppler Velocimetry and Ultrasonic Measuring Devices
,”
Flow Meas. Instrum.
,
3
(2), pp.
95
101
.
31.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages-Thermohydaulic Performance and Fabrication Technology
,”
ASME
Paper No. IMECE2002-32043.
32.
Argo
,
T.
, and
Wilson
,
P.
,
2008
, “
Measurement of Resonance Frequency of Single Bubbles Using a Laser Doppler Vibrometer
,”
JASA Exp. Lett.
,
123
(
6
), pp.
EL121
EL125
.
33.
Schmitt
,
F.
,
Hazarika
,
B. K.
, and
Hirsch
,
C.
,
2001
, “
LDV Measurements of the Flow in a Nozzle Region of a Confined Double Annular Burner
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
228
236
.
34.
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2003
, “
Turbulent Boundary Layers Over Surfaces Soothed by Sanding
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
863
870
.
35.
Yamaguchi
,
R.
,
Mashina
,
T.
,
Amagai
,
H.
,
Fujii
,
H.
,
Hayase
,
T.
, and
Tanishita
,
K.
,
2005
, “
Variation of Wall Shear Stress and Periodic Oscillations Induced in the Right-Angle Branch During Laminar Steady Flow
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
1013
1020
.
36.
So
,
S.
,
Morikita
,
H.
,
Takagi
,
S.
, and
Matsmotu
,
Y.
,
2002
, “
Laser Doppler Velocimetry of Turbulent Bubbly Channel Flow
,”
Exp. Fluids
,
33
(
1
), pp.
135
142
.
37.
Verhelst
,
J. M.
, and
Nieuwstadt
,
F.
,
2004
, “
Visco-Elastic Flow Past Circular Cylinders Mounted in a Channel: Experimental Measurements of Velocity and Drag
,”
J. Non-Newton Fluid Mech.
,
116
(
2–3
), pp.
301
328
.
38.
Zhang
,
Y.
, and
Che
,
D.
,
2011
, “
Turbulence Statistics in a Rectangular Channel Flow With One Groove-Roughened Wall
,”
AIP Conf. Proc.
,
1376
, pp.
90
93
.
39.
Castrejón-Pita
,
J. R.
,
Castrejón-Pita
,
A. A.
,
Huelsz
,
G.
, and
Tovar
,
R.
,
2006
, “
Experimental Demonstration of the Rayleigh Acoustic Viscous Boundary Layer Theory
,”
Phys. Rev.
,
73
(
3
), p.
036601
.
40.
Appel
,
C.
,
Mantzaras
,
J.
,
Schaeren
,
R.
,
Bombach
,
R.
, and
Inauen
,
A.
,
2005
, “
Turbulent Catalytically Stabilized Combustion of Hydrogen/Air Mixtures in Entry Channel Flows
,”
Combust. Flame
,
140
(
1–2
), pp.
70
92
.
41.
Marx
,
D.
,
Auregan
,
Y.
,
Bailliet
,
H.
, and
Valiere
,
J.
,
2010
, “
PIV and LDV Evidence of Hydrodynamic Instability Over a Liner in a Duct With Flow
,”
J. Sound Vib.
,
329
(
18
), pp.
3797
3812
.
42.
Kunz
,
R. F.
,
Amico
,
S. W. D.
,
Vassallo
,
P.
, and
Zaccaria
,
M. A.
,
2001
, “
LDV Measurements of Confined Parallel Jet Mixing
,”
ASME J. Fluids Eng.
,
123
(3), pp.
567
573
.
43.
Arbeiter
,
F.
,
Gordeev
,
S.
,
Heinzel
,
V.
,
Leichtle
,
D.
, and
Stratmanns
,
E.
,
2007
, “
Mini-Channel Flow Experiments and CFD Validation Analyses With the IFMIF Thermo-Hydraulic Experimental Facility (ITHEX)
,”
Fusion Eng. Des.
,
82
(
15–24
), pp.
2456
2461
.
44.
Avari
,
H.
,
Savory
,
E.
, and
Rogers
,
K. A.
,
2016
, “
An In Vivo Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells
,”
J. Cardiovasc. Eng. Technol.
,
7
(
1
), pp.
44
57
.
45.
Lidai
,
W.
,
Xia
,
J.
,
Yao
,
J.
,
Maslov
,
K. I.
, and
Wang
,
L. V.
,
2013
, “
Ultrasonically Encoded Photoacoustic Flowgraphy in Biological Tissue
,”
Phys. Rev. Lett.
,
111
(
20
), p.
204301
.
46.
TSI
, 2011, “
FlowSizer 2011 (2.0.4)
,” TSI Inc., Shoreview, MN.
47.
Melling
,
A.
,
1997
, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1406
1416
.
48.
Loth
,
E.
,
2000
, “
Numerical Approaches for Motion of Dispersed Particles, Droplets and Bubbles
,”
Prog. Energy Combust.
,
26
(
3
), pp.
161
223
.
49.
Khadivi
,
T.
,
2012
, “
Experimental and Numerical Study of Flow Structure
,” Ph.D. thesis, University of Western Ontario, London, ON, Canada.
50.
Keirsbulck
,
L.
,
Labraga
,
L.
, and
Haddad
,
M.
,
2006
, “
Influence of Blowing on the Anisotropy of the Reynolds Stress Tensor in a Turbulent Channel Flow
,”
Exp. Fluids
,
40
(
4
), pp.
654
662
.
51.
Mei
,
R.
,
1996
, “
Velocity Fidelity of Flow Tracer Particles
,”
Exp. Fluids
,
22
(
1
), pp.
1
13
.
52.
White
,
F. M.
,
2007
,
Fluid Mechanics
, 7th ed.,
McGraw-Hill
,
New York
, Chap. 6.
53.
Radomsky
,
R. W.
, and
Thole
,
T. A.
,
2002
, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
124
(1), pp.
107
118
.
54.
Durst
,
F.
,
Miller
,
R.
, and
Jovanovie
,
J.
,
1988
, “
Determination of the Measuring Position in Laser-Doppler Anemometry
,”
Exp. Fluids
,
6
(2), pp.
105
110
.
55.
McCann
,
J. A.
,
Peterson
,
S. D.
,
Plesniak
,
M. W.
,
Webster
,
T. J.
, and
Haberstroh
,
K. M.
,
2005
, “
Non-Uniform Flow Behavior in a Parallel Plate Flow Chamber Alters Endothelial Cell Responses
,”
Ann. Biomed. Eng.
,
33
(
3
), pp.
328
336
.
56.
Patel
,
V. C.
, and
Head
,
M. R.
,
1969
, “
Some Observations on Skin Friction and Velocity Profiles in Fully Developed Pipe and Channel Flows
,”
J. Fluid Mech.
,
38
(
1
), pp.
181
201
.
57.
Wheeler
,
A. J.
, and
Ganji
,
A. R.
,
2010
,
Introduction to Engineering Experimentation
,
Prentice Hall
,
Upper Saddle River, NJ
.
58.
Durst
,
F.
,
Jovanovic
,
J.
, and
Sender
,
J.
,
1995
, “
LDA Measurements in the Near-Wall Region of a Turbulent Pipe Flow
,”
J. Fluid Mech.
,
295
(
1
), pp.
305
335
.
59.
Kehoe
,
S.
,
2001
, “
An Experimental Investigation of the Hemodynamic Effects at Mildly Stenosed Carotid Artery Bifurcation
,” Master's thesis, University of Western Ontario, London, ON, Canada.
60.
Edwards
,
R. E.
,
1987
, “
Report of the Special Panel on Statistical Particle Bias Problems in Laser Anemometry
,”
ASME J. Fluids Eng.
,
109
(
2
), pp.
89
93
.
61.
Einav
,
S.
,
Stolero
,
D.
,
Avidor
,
J. M.
, and
Elad
,
D.
,
1990
, “
Wall Shear Stress Distribution Along the Cusp of a Tri-Leaflet Prosthetic Valve
,”
ASME J. Biomech. Eng.
,
12
(
1
), pp.
13
18
.
62.
Mark
,
F. F.
,
Bargeron
,
C. B.
,
Deters
,
O. J.
, and
Friedman
,
M. H.
,
1989
, “
Variations in Geometry and Shear Rate Distribution in Casts of Human Aortic Bifurcations
,”
J. Biomech.
,
22
(
6–7
), pp.
577
582
.
63.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarin
,
C. Z.
, and
Glago
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
.
64.
Fatemi
,
R. S.
, and
Rittgers
,
S. E.
,
1994
, “
Derivation of Shear Rates From Near-Wall LDA Measurements Under Steady and Pulsatile Flow Conditions
,”
ASME J. Biomech. Eng.
,
116
(
3
), pp.
361
367
.
65.
Lou
,
Z.
,
Yang
,
W.
, and
Stein
,
P. D.
,
1993
, “
Errors in the Estimation of Arterial Wall Shear Rates That Results From Curve Fitting of Velocity Profiles
,”
J. Biomech.
,
26
(
4–5
), pp.
45
390
.
66.
Reynolds
,
W. C.
, and
Hussain
,
A. K. F. M.
,
1972
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow—Part 3: Theoretical Models and Comparisons With Experiments
,”
J. Fluid Mech.
,
54
(
2
), pp.
263
268
.
67.
Wu
,
S.-C.
,
2002
, “
Phase-Averaged Method Applied to Periodic Flow Between Shrouded Corotating Disks
,”
Int. J. Rotating Mach.
,
8
(
6
), pp.
413
421
.
68.
Kefayati
,
S.
,
Milner
,
J. S.
,
Holdsworth
,
D. W.
, and
Poepping
,
T. L.
,
2014
, “
In Vitro Shear Stress Measurements Using Particle Image Velocimetry in a Family of Carotid Artery Models: Effect of Stenosis Severity, Plaque Eccentricity, and Ulceration
,”
Plos One
,
9
(
7
), p.
0098209
.
69.
Enaux
,
B.
,
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Thobois
,
L.
,
Dugue
,
V.
, and
Poinsot
,
T.
,
2011
, “
Large Eddy Simulation of a Motored Single-Cylinder Piston Engine: Numerical Strategies and Validation
,”
Flow Turbul. Combust.
,
86
(
2
), pp.
153
177
.
70.
Filatova
,
O. V.
,
Sidorenko
,
A. A.
, and
Shorobogatov
,
Y. Y.
,
2014
, “
Age and Sex Dependence of Hemodynamic Parameters of Human Internal Carotid Artery
,”
Hum. Physiol.
,
40
(
5
), pp.
93
102
.
71.
Cosgrove
,
J. A.
,
Buick
,
J. M.
,
Tonge
,
S. J.
,
Munro
,
C. G.
,
Greated
,
C. A.
, and
Campbell
,
D. M.
,
2003
, “
Application of the Lattice Boltzmann Method to Transition in Oscillatory Channel Flow
,”
J. Phys.
,
36
(
10
), pp.
2609
2620
.
72.
Campbell
,
I. C.
,
Ries
,
J.
,
Dhawan
,
S. S.
,
Quyyumi
,
A. A.
,
Taylor
,
W. R.
, and
Oshinski
,
J. N.
,
2012
, “
Effect of Inlet Velocity Profiles on Patient-Specific Computational Fluid Dynamics Simulations of Carotid Bifurcations
,”
ASME J. Biomech. Eng.
,
134
(
5
), p.
051001
.
73.
Hirata
,
K.
,
Yaginuma
,
T.
,
O'Rourkte
,
M. F.
, and
Kawakami
,
M.
,
2006
, “
Age-Related Changes in Carotid Artery Flow and Pressure Pulse
,”
Stroke
,
37
(
10
), pp.
2552
2556
.
74.
Ponzini
,
R.
,
Vergara
,
C.
,
Riz
,
G.
,
Veneziani
,
A.
,
Roghi
,
A.
,
Vanzul
,
A.
,
Parodi
,
O.
, and
Redaelli
,
A.
,
2010
, “
Womersley Number-Based Estimates of Blood Flow Rate in Doppler Analysis: In Vivo Validation by Means of Phase-Contrast MRI
,”
IEEE Trans. Biomed. Eng.
,
57
(
7
), pp.
1807
1815
.
75.
Hale
,
J. F.
,
McDonald
,
D. A.
, and
Womersley
,
J. R.
,
1955
, “
Velocity Profiles of Oscillating Arterial Flow, With Some Calculations of Viscous Drag and Reynolds Number
,”
J. Physiol.
,
128
(
3
), pp.
629
640
.
76.
Samijo
,
S. K.
,
Barkhuysen
,
R.
,
Willigers
,
J.
,
Leunissen
,
K. M.
,
Ledoux
,
L. A.
,
Kitslaar
,
P. J.
, and
Hoeks
,
A. P.
,
2002
, “
Wall Shear Stress Assessment in the Common Carotid Artery of End-Stage Renal Failure Patients
,”
Nephron
,
92
(
3
), pp.
557
563
.
77.
Oshinski
,
J. N.
,
Curtin
,
J. L.
, and
Loth
,
F.
,
2006
, “
Mean-Average Wall Shear Stress Measurements in the Common Carotid Artery
,”
J. Cardiovasc. Magn. Reson.
,
8
(
5
), pp.
717
722
.
78.
Fan
,
C.
,
1965
, “
Unsteady, Laminar, Incompressible Flow Through Rectangular Ducts
,”
ZAMP
,
16
(
3
), pp.
351
360
.
79.
Vratonjic
,
M.
,
2017
, “
Flow Characterization Under Idealized Stenosis Geometry and Performance Assessment of the Hemodynamic Flow Facility
,”
Ph.D. thesis
, University of Western Ontario, London, ON, Canada.https://ir.lib.uwo.ca/etd/4885/
80.
Chandran, K. B., Rittgers, S. E., and Yoganathan, A. P., 2012, Biofluid Mechanics, CRC Press, Boca Raton, FL, Chap. 3.
81.
Chandran, K. B., Rittgers, S. E., and Yoganathan, A. P., 2012,
Biofluid Mechanics
, CRC Press, Boca Raton, FL, Chap. 4.
82.
Singha
,
P. K.
,
Marzoc
,
A.
,
Howa
,
B.
,
Rufenacht
,
D. A.
,
Bijlenga
,
P.
,
Frangi
,
A. F.
,
Lawford
,
P.
,
Coley
,
S. C.
,
Hose
,
D. R.
, and
Patel
,
U. J.
,
2010
, “
Effects of Smoking and Hypertension on Wall Shear Stress and Oscillatory Shear Index at the Site of Intracranial Aneurysm Formation
,”
Clin. Neurol. Neurosurg.
,
112
(4), pp.
306
313
.
83.
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2013
, “
Reynolds-Number Scaling of Turbulent Channel Flow
,”
Phys. Fluids
,
25
(
2
), p.
025104
.
84.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulent Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid. Mech.
,
177
(
1
), pp.
133
166
.
85.
Durst
,
F.
,
Lekakis
,
J.
,
Jovanovic
,
J.
, and
Ye
,
Q.
,
1996
, “
Wall Shear Stress Determination From Near-Wall Mean Velocity Data in Turbulent Pipe and Channel Flows
,”
Exp. Fluids
,
20
(
6
), pp.
417
428
.
86.
Antonia
,
R. A.
,
Teitel
,
M.
, and
Kim
,
J.
,
1992
, “
Low-Reynolds-Number Effects in a Fully Developed Turbulent Channel Flow
,”
J. Fluid. Mech.
,
236
(
1
), pp.
579
605
.
87.
Moser
,
R.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ=590
,”
Phys. Fluids
,
11
(
4
), pp.
934
945
.
88.
Li
,
H.
, and
Olsen
,
M. G.
,
2006
, “
Aspect Ratio Effects on Turbulent and Transitional Flow in Rectangular Microchannels as Measured With MicroPIV
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
307
315
.
You do not currently have access to this content.