The Spalart–Allmaras (SA) is one of the most popular turbulence models in the aerospace computational fluid dynamics (CFD) community. In its original (low-Reynolds number) formulation, it requires a very tight grid spacing near the wall to resolve the high flow gradients. However, the use of wall functions with an automatic feature of switching from the wall function to the low-Reynolds number approach is an effective solution to this problem. In this work, we extend Menter's automatic wall treatment (AWT), devised for the k–ω-shear stress transport (SST), to the SA model in our in-house developed three-dimensional unstructured grid density-based CFD solver. It is shown, for both momentum and energy equations, that the formulation gives excellent predictions with low sensitivity to the grid spacing near the wall and allows the first grid point to be placed at y+ as high as 150 without loss of accuracy, even for the curved walls. In practical terms, this means a near-wall grid 10–30 times as coarse as that required in the original model would be sufficient for the computations.

References

1.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 1992-439.
2.
Deck
,
S.
,
Duveau
,
P.
,
d'Espiney
,
P.
, and
Guillen
,
P.
,
2002
, “
Development and Application of Spalart–Allmaras One Equation Turbulence Model to Three-Dimensional Supersonic Complex Configurations
,”
Aerosp. Sci. Technol.
,
6
(
3
), pp.
171
183
.
3.
Hildebrandt
,
A.
, and
Schilling
,
F.
,
2017
, “
Numerical and Experimental Investigation of Return Channel Vane Aerodynamics With Two-Dimensional and Three-Dimensional Vanes
,”
ASME J. Turbomach.
,
139
(
1
), p.
011010
.
4.
Wilcox
,
D. C.
,
2003
,
Turbulence Modeling for CFD
, Vol.
2
,
DCW Industries
,
La Canada, CA
.
5.
Ota
,
D. K.
, and
Goldberg
,
U. C.
,
1997
, “
Law of the Wall With Consistent No-Slip Limit
,”
AIAA
Paper No. AIAA-97-2246.
6.
Goldberg
,
U.
,
Peroomian
,
O.
, and
Chakravarthy
,
S.
,
1998
, “
A Wall-Distance-Free k-ε Model With Enhanced Near-Wall Treatment
,”
ASME J. Fluids Eng.
,
120
(
3
), pp.
457
462
.
7.
Knopp
,
T.
,
Alrutz
,
T.
, and
Schwamborn
,
D.
,
2006
, “
A Grid and Flow Adaptive Wall-Function Method for RANS Turbulence Modelling
,”
J. Comput. Phys.
,
220
(
1
), pp.
19
40
.
8.
Medic
,
G.
,
Kalitzin
,
G.
,
Iaccarino
,
G.
, and
Van Der Weide
,
E.
,
2006
, “
Adaptive Wall Functions With Applications
,”
AIAA
Paper No. 3744.
9.
Craft
,
T.
,
Gant
,
S.
,
Iacovides
,
H.
, and
Launder
,
B.
,
2004
, “
A New Wall Function Strategy for Complex Turbulent Flows
,”
Numer. Heat Transfer, Part B
,
45
(
4
), pp.
301
318
.
10.
Segunda
,
V. M.
,
Ormiston
,
S.
, and
Tachie
,
M.
,
2016
, “
Numerical Analysis of Turbulent Flow Over a Wavy Wall in a Channel
,”
ASME
Paper No. FEDSM2016-7712.
11.
Berger
,
M. J.
, and
Aftosmis
,
M. J.
,
2017
, “
An ODE-Based Wall Model for Turbulent Flow Simulations
,”
AIAA J.
,
56
(2), pp. 700–714.
12.
Berger
,
M.
, and
Aftosmis
,
M.
,
2012
, “
Progress Towards a Cartesian Cut-Cell Method for Viscous Compressible Flow
,”
AIAA
Paper No. 2012-1301.
13.
Allmaras
,
S. R.
, and
Johnson
,
F. T.
,
2012
, “
Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model
,” Seventh International Conference on Computational Fluid Dynamics (
ICCFD7
), Big Island, HI, July 9–13, pp.
1
11
.
14.
Goldberg
,
U.
, and
Batten
,
P.
,
2017
, “
Rough Surface Wall Function Treatment With Single Equation Turbulence Models
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081204
.
15.
Menter
,
F.
, and
Esch
,
T.
,
2001
, “
Elements of Industrial Heat Transfer Predictions
,” 16th Brazilian Congress of Mechanical Engineering Symposium on Vibration and Acoustics (
COBEM
), Uberlândia, Brazil, Nov. 26–30, pp. 117–127.
16.
Menter
,
F.
,
Ferreira
,
J. C.
,
Esch
,
T.
,
Konno
,
B.
, and ANSYS CFX Germany,
2003
, “
The SST Turbulence Model With Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines
,”
International Gas Turbine Congress
, Tokyo, Japan, Nov. 2–7, pp.
2
7
.
17.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
(
1
), pp.
625
632
.
18.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.
19.
Sharma
,
V.
,
Assam
,
A.
, and
Eswaran
,
V.
,
2016
, “
Development of All Speed Three Dimensional Computational Fluid Dynamics Solver for Unstructured Grids
,”
Sixth International and 43rd National Conference on Fluid Mechanics and Fluid Power (FMFP)
, Allahabad, India, Dec. 15–17, Paper No. 34.
20.
Diskin
,
B.
, and
Thomas
,
J. L.
,
2016
, “
Introduction: Evaluation of RANS Solvers on Benchmark Aerodynamic Flows
,”
AIAA J.
,
54
(
9
), pp.
2561
2562
.
21.
Blazek
,
J.
,
2015
,
Computational Fluid Dynamics: Principles and Applications
,
Butterworth-Heinemann
, Oxford, UK.
22.
Weiss
,
J. M.
,
Maruszewski
,
J. P.
, and
Smith
,
W. A.
,
1999
, “
Implicit Solution of Preconditioned Navier–Stokes Equations Using Algebraic Multigrid
,”
AIAA J.
,
37
(
1
), pp.
29
36
.
23.
Boussinesq
,
J.
,
1877
,
Essai Sur La Théorie Des Eaux Courantes
,
Imprimerie nationale
, Paris, France.
24.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number-Where Are We?
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
.
25.
Dacles-Mariani
,
J.
,
Zilliac
,
G. G.
,
Chow
,
J. S.
, and
Bradshaw
,
P.
,
1995
, “
Numerical/Experimental Study of a Wingtip Vortex in the Near Field
,”
AIAA J.
,
33
(
9
), pp.
1561
1568
.
26.
Dacles-Mariani
,
J.
,
Kwak
,
D.
, and
Zilliac
,
G.
,
1999
, “
On Numerical Errors and Turbulence Modeling in Tip Vortex Flow Prediction
,”
Int. J. Numer. Methods Fluids
,
30
(
1
), pp.
65
82
.
27.
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2007
, “
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
,”
AIAA J.
,
45
(
10
), p.
2544
.
28.
Im, H.-S., and Zha, G.-C., 2014, “
Delayed Detached Eddy Simulation of Airfoil Stall Flows Using High-Order Schemes
,”
ASME J. Fluids Eng.
,
136
(11), p. 111104.
29.
Kader
,
B.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.
30.
Bredberg
,
J.
,
2000
, “On the Wall Boundary Condition for Turbulence Models,” Chalmers, Goteborg, Sweden, Internal Report No.
00/4
.
31.
Bredberg
,
J.
,
Peng
,
S.
, and
Davidson
,
L.
,
2000
, “
On the Wall Boundary Condition for Computing Turbulent Heat Transfer With K-Omega Models
,” ASME Heat Transfer Division, Orlando, FL, Nov. 5–10, Paper No.
366-5
.
32.
Weiss
,
J. M.
, and
Smith
,
W. A.
,
1995
, “
Preconditioning Applied to Variable and Constant Density Flows
,”
AIAA J.
,
33
(
11
), pp.
2050
2057
.
33.
Moryossef
,
Y.
, and
Levy
,
Y.
,
2006
, “
Unconditionally Positive Implicit Procedure for Two-Equation Turbulence Models: Application to k–ω Turbulence Models
,”
J. Comput. Phys.
,
220
(
1
), pp.
88
108
.
34.
Shende
,
N. V.
, and
Mor-Yossef
,
Y.
,
2010
, “
Robust Implementation of the Spalart–Allmaras Turbulence Model for Unstructured Grid
,” Fifth European Conference on Computational Fluid Dynamics (
ECCOMAS CFD
), Lisbon, Portugal, June 14–17, pp. 1–14.
35.
Mohammad
,
B.
, and
Puigt
,
G.
,
2001
, “
Generalized Wall Functions for High-Speed Separated Flows Over Adiabatic and Isothermal Walls
,”
Int. J. Comput. Fluid Dyn.
,
14
(
3
), pp.
183
200
.
36.
Zhang
,
Y.
,
Bai
,
J.-Q.
, and
Xu
,
J.-L.
,
2016
, “
A Scale-Adaptive Turbulence Model Based on the k-Equation and Recalibrated Reynolds Stress Constitutive Relation
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
061203
.
37.
NASA Langley Research Center, 2018, “
Turbulence Modeling Resource
,” NASA Langley Research Center, Washington, DC, accessed Jan. 30, 2018, https://turbmodels.larc.nasa.gov/
38.
Krist
,
S. L.
,
Biedron
,
R. T.
, and
Rumsey
,
C. L.
,
1998
, “
CFL3D User's Manual (Version 5.0)
,” NASA Langley Research Center, Hampton, VA, accessed Jan. 31, 2018, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980218172.pdf
39.
Wieghardt
,
K.
, and
Tillman
,
W.
,
1951
, “
On the Turbulent Friction Layer for Rising Pressure
,” National Advisory Committee for Aeronautics, Washington, DC, Technical Report No.
NACA-TM-1314
.
40.
Salim
,
S. M.
, and
Cheah
,
S.
,
2009
, “
Wall y+ Strategy for Dealing With Wall-Bounded Turbulent Flows
,”
International Multiconference of Engineers and Computer Scientists
, Hong Kong, China, Mar. 18–20, pp. 2165–2170.
41.
SimCafe, 2008, “
Forced Convection over a Flat Plate
,” Cornell University, Ithaca, NY, accessed Jan. 30, 2018, https://confluence.cornell.edu/display/SIMULATION/FLUENT+-+Forced+Convection+over+a+Flat+Plate-+Problem+Specification
42.
Reynolds
,
W. C.
,
Kays
,
W. M.
, and
Kline
,
S. J.
,
1958
, “
Heat Transfer in the Turbulent Incompressible Boundary Layer—3: Arbitrary Wall Temperature and Heat Flux
,” Stanford University, Stanford, CA, Report No.
NASA-MEMO-12-3-58W
.
43.
Seban
,
R. A.
, and Back, L. H.,
1962
, “
Effectiveness and Heat Transfer for a Turbulent Boundary Layer With Tangential Injection and Variable Free-Stream Velocity
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
235
242
.
44.
Gregory
,
N.
, and
O'reilly
,
C.
,
1973
,
Low-Speed Aerodynamic Characteristics of NACA 0012 Aerofoil Section, Including the Effects of Upper-Surface Roughness Simulating Hoar Frost
,
HM Stationery Office
,
London
.
You do not currently have access to this content.