Based on computational fluid dynamics and the finite volume method, water droplet erosion in the last stage of an industrial steam turbine was researched and the trajectories of the water droplets were traced by using the Lagrange method. Under steady conditions, the influence of variant bowed vane designs was compared based on the distribution and movement trends of the secondary water droplets. In addition, the effects of the bowed blades on water movement at the vane surfaces and their impact areas and intensity on the blades were analyzed. The results showed that: (1) a negatively bowed blade can reduce the speed of the secondary water droplets at the mid span of the blade, which are also effective for water droplets on the surface of the vanes and (2) a negatively bowed blade improves the speed of the secondary droplets on the end walls of vanes, which is advantageous to the secondary droplets through blade passage and reduction of secondary droplet impulse on the blades.

References

1.
Starzmann
,
J.
,
Schatz
,
M.
,
Casey
,
M. V.
, and
Mayer
,
J. F.
,
2011
, “Modeling and Validation of Wet Steam Flow in a Low Pressure Steam Turbine,”
ASME
Paper No. GT2011-45672.
2.
Kirolsa
,
H. S.
,
Mahdipoora
,
M. S.
,
Kevorkova
,
D.
,
Uihleinb
,
A.
, and
Medraj
,
M.
,
2016
, “
Energy Based Approach for Understanding Water Droplet Erosion
,”
Mater. Des.
,
104
, pp.
76
86
.
3.
Mahdipoor
,
M. S.
,
Kevorkov
,
D.
,
Jedrzejowski
,
P.
, and
Medraj
,
M.
,
2016
, “
Water Droplet Erosion Behaviour of Gas Nitrided Ti6Al4V
,”
Surf. Coat. Technol.
,
292
, pp.
78
89
.
4.
Robinson
,
J. M.
, and
Reed
,
R. C.
,
1995
, “
Water Droplet Erosion of Laser Surface Treated Ti-6A1-4V
,”
Wear
,
186–187
(
Pt. 2
), pp.
360
367
.
5.
Slot
,
H. M.
,
Gelinck
,
E. R. M.
,
Rentrop
,
C.
, and
Heide
,
E. V. D.
,
2015
, “
Leading Edge Erosion of Coated Wind Turbine Blades: Review of Coating Life Models
,”
Renewable Energy
,
80
, pp.
837
848
.
6.
Valaker
,
E. A.
,
Armada
,
S.
, and
Wilson
,
S.
,
2015
, “
Droplet Erosion Protection Coatings for Offshore Wind Turbine Blades
,”
Energy Procedia
,
80
, pp.
263
275
.
7.
Luiset
,
B.
,
Sanchette
,
F.
,
Billard
,
A.
, and
Schuster
,
D.
,
2013
, “
Mechanisms of Stainless Steels Erosion by Water Droplets
,”
Wear
,
303
(1–2), pp.
459
464
.
8.
Kamkar
,
N.
,
Bridier
,
F.
,
Jedrzejowski
,
P.
, and
Bocher
,
P.
,
2015
, “
Water Droplet Impact Erosion Damage Initiation in Forged Ti–6Al–4V
,”
Wear
,
322–323
, pp.
192
202
.
9.
Oka
,
Y. I.
,
Mihara
,
S.
, and
Miyata
,
H.
,
2007
, “
Effective Parameters for Erosion Caused by Water Droplet Impingement and Applications to Surface Treatment Technology
,”
Wear
,
263
(1–6), pp.
386
394
.
10.
Mahdipoor
,
M. S.
,
Kevorkov
,
D.
,
Jedrzejowski
,
P.
, and
Medraj
,
M.
,
2016
, “
Water Droplet Erosion Mechanism of Nearly Fully-Lamellar Gamma TiAl Alloy
,”
Mater. Des.
,
89
, pp.
1095
1106
.
11.
Kamkar
,
N.
,
Bridier
,
F.
,
Bocher
,
P.
, and
Jedrzejowski
,
P.
,
2013
, “
Water Droplet Erosion Mechanisms in Rolled Ti–6Al–4V
,”
Wear
,
301
(1–2), pp.
442
448
.
12.
Gujba
,
A. K.
,
Hackel
,
L.
,
Kevorkov
,
D.
, and
Medraj
,
M.
,
2016
, “
Water Droplet Erosion Behaviour of Ti–6Al–4V and Mechanisms of Material Damage at the Early and Advanced Stages
,”
Wear
,
358–359
, pp.
109
122
.
13.
Kirols
,
H. S.
,
Kevorkov
,
D.
,
Uihlein
,
A.
, and
Medraj
,
M.
,
2015
, “
The Effect of Initial Surface Roughness on Water Droplet Erosion Behavior
,”
Wear
,
342–343
, pp.
198
209
.
14.
Fujisawa
,
N.
,
Yamagata
,
T.
,
Takano
,
S.
,
Saito
,
K.
,
Morita
,
R.
,
Fujiwara
,
K.
, and
Inada
,
F.
,
2015
, “
The Influence of Material Hardness on Liquid Droplet Impingement Erosion
,”
Nucl. Eng. Des.
,
288
, pp.
27
34
.
15.
Hattori
,
S.
, and
Kakuichi
,
M.
,
2013
, “
Effect of Impact Angle on Liquid Droplet Impingement Erosion
,”
Wear
,
298–299
, pp.
1
7
.
16.
Ahmad
,
M.
,
Schatz
,
M.
, and
Casey
,
M. V.
,
2013
, “
Experimental Investigation of Droplet Size Influence on Low Pressure Steam Turbine Blade Erosion
,”
Wear
,
303
(1–2), pp.
83
86
.
17.
Koka
,
T.
,
John
,
P. Z.
, and
Dayalan
,
S.
,
2014
, “Water Droplet Erosion Simulation of a Turbocharger Compressor Wheel,”
ASME
Paper No. GT2014-26974.
18.
Han
,
Y.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2012
, “Numerical Study on High-Speed Impact Between a Water Droplet and a Deformable Solid Surface,”
ASME
Paper No. GT2012-69700.
19.
Starzmann
,
J.
,
Kaluza
,
P.
, and
Casey
,
M. V.
,
2013
, “On Kinematic Relaxation and Deposition of Water Droplets in the Last Stages of Low Pressure Steam Turbine,”
ASME
Paper No. GT2013-95179.
20.
Hesketh
,
J. A.
, and
Walker
,
P. J.
,
2005
, “
Effects of Wetness in Steam Turbines
,”
Proc. Inst. Mech. Eng.: Part C, J. Mech. Eng. Sci.
,
219
(
12
), pp.
1301
1314
.
21.
Stüer
,
H.
,
Truckenmüller
,
F.
,
Borthwick
,
D.
, and
Denton
,
J. D.
,
2005
, “Aerodynamic Concept for Very Large Steam Turbine Last Stages,”
ASME
Paper No. GT2005-68746.
22.
Sigg
,
R.
,
Casey
,
M. V.
,
Mayer
,
J. F.
, and
Sürken
,
N.
,
2008
, “The Influence of Lean and Sweep in a Low Pressure Steam Turbine: Analysis of Three Stages With a 3D CFD Model,”
ASME
Paper No. GT2008-50161.
23.
Ono
,
H.
,
Senoo
,
S.
,
Kudo
,
T.
, and
Murata
,
K.
,
2013
, “The Effects of the Tangential Leans for the Last Stage Nozzles of Steam Turbine,”
ASME
Paper No. GT2013-95827.
24.
Yamamoto
,
S.
,
2005
, “
Computation of Practical Flow Problems With Release of Latent Heat
,”
Energy
,
30
(2–4), pp.
197
208
.
25.
Wróblewski
,
W.
, and
Dykas
,
S.
,
2016
, “
Two-Fluid Model With Droplet Size Distribution for Condensing Steam Flows
,”
Energy
,
106
, pp.
112
120
.
26.
Li
,
N.
,
Zhou
,
Q.
,
Chen
,
X.
,
Xu
,
T.
,
Hui
,
S.
, and
Zhang
,
D.
,
2008
, “
Liquid Drop Impact on Solid Surface With Application to Water Drop Erosion on Turbine Blades—Part I: Nonlinear Wave Model and Solution of One-Dimensional Impact
,”
Int. J. Mech. Sci.
,
50
(10–11), pp.
1526
1542
.
27.
Zhou
,
Q.
,
Li
,
N.
,
Chen
,
X.
,
Xu
,
T.
,
Hui
,
S.
, and
Zhang
,
D.
,
2008
, “
Liquid Drop Impact on Solid Surface With Application to Water Drop Erosion on Turbine Blades—Part II: Axisymmetric Solution and Erosion Analysis
,”
Int. J. Mech. Sci.
,
50
(10–11), pp. 1543–1558.
28.
Zhou
,
Q.
,
Li
,
N.
,
Chen
,
X.
,
Xu
,
T.
,
Hui
,
S.
, and
Zhang
,
D.
,
2009
, “
Analysis of Water Drop Erosion on Turbine Blades Based on a Nonlinear Liquid–Solid Impact Model
,”
Int. J. Mech. Sci.
,
36
(9), pp.
1156
1171
.
29.
ANSYS,
2011
, “
ANSYS CFX-Solver Theory Guide, Release 14.0
,” ANSYS, Canonsburg, PA, accessed Dec. 28, 2017, https://www.scribd.com/document/146465149/ANSYS-CFX-Solver-Theory-Guide
30.
ANSYS
,
2011
, “
ANSYS TurboGrid User's Guide, Release 14.0
,” ANSYS, Canonsburg, PA, accessed Dec. 28, 2017, http://www.ansys.com/products/fluids/ansys-turbogrid
31.
Wróblewski
,
W.
,
Dykas
,
S.
,
Gardzilewicz
,
A.
, and
Kolovratnik
,
M.
,
2009
, “
Numerical and Experimental Investigations of Steam Condensation in LP Part of a Large Power Turbine
,”
ASME J. Fluids Eng.
,
134
(
4
), p.
041301
.
32.
Mazumder
,
Q. H.
,
Ahmed
,
K.
, and
Zhao
,
S.
,
2015
, “
Experimental Investigation of Solid Particle Erosion in S-Bend
,”
ASME J. Fluid Eng.
,
138
(
4
), p.
044501
.
33.
Yu
,
R.
,
Zhang
,
Z.
, and
Pang
,
F.
,
1992
, “
Test and Study of the Corrugated Steam Separator
,”
Nucl. Power Eng.
,
13
(
6
), pp.
21
25
. (in Chinese)
34.
Ling
,
J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2015
, “
Optimal Turbulent Schmidt Number for RANS Modeling of Trailing Edge Slot Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072605
.
35.
Dosanjh
,
S.
, and
Humphrey
,
J. A. C.
,
1985
, “
The Influence of Turbulence on Erosion by a Particle Laden Fluid Jet
,”
Wear
,
102
(4), pp.
309
330
.
You do not currently have access to this content.