A twin-fluid atomizer configuration is predicted by means of the two-dimensional (2D) weakly compressible smooth particle hydrodynamics (SPH) method and compared to experiments. The setup consists of an axial liquid jet surrounded by a high-speed air stream (Ug ≈ 60 m/s) in a pressurized reactor, which is operated at up to 11 bar. Two types of liquid are investigated: a viscous Newtonian liquid (μl = 200 mPa·s) consisting of glycerol/water mixture and a viscous non-Newtonian liquid (μ1,apparent. ≈ 150 mPa·s), which is a carboxymethyl cellulose solution. Three-dimensional (3D) effects are taken into account in the 2D code by introducing: (i) a surface tension term, (ii) a cylindrical viscosity operator, and (iii) a modified velocity accounting for the divergence of the volume in the radial direction. The numerical results at high pressure show a good qualitative agreement with experiment, i.e., a correct transition of the different atomization regimes with regard to pressure, and similar dynamics and length scales of the generated ligaments. The propagation velocity of the Kelvin–Helmholtz (KH) instability is well predicted, but its frequency needs a correction factor to be globally well recovered for the Newtonian liquid. The Sauter mean diameter (SMD), calculated from the spray size distribution, shows similar trends of the reactor pressure dependency. The simulation of the non-Newtonian liquid at high pressure shows the same breakup regime with finer droplets compared to Newtonian liquids, and the simulation at atmospheric pressure shows an apparent viscosity similar to the experiment.
Skip Nav Destination
Article navigation
June 2018
Research-Article
Smoothed Particle Hydrodynamics Simulation of an Air-Assisted Atomizer Operating at High Pressure: Influence of Non-Newtonian Effects
G. Chaussonnet,
G. Chaussonnet
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Kaiserstr. 12,
Karlsruhe 76131, Germany
e-mail: geoffroy.chaussonnet@kit.edu
Karlsruher Institut für Technologie (KIT),
Kaiserstr. 12,
Karlsruhe 76131, Germany
e-mail: geoffroy.chaussonnet@kit.edu
Search for other works by this author on:
R. Koch,
R. Koch
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Karlsruher Institut für Technologie (KIT),
Kaiserstr. 12
,Karlsruhe 76131, Germany
Search for other works by this author on:
H.-J. Bauer,
H.-J. Bauer
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Karlsruher Institut für Technologie (KIT),
Kaiserstr. 12
,Karlsruhe 76131, Germany
Search for other works by this author on:
A. Sänger,
A. Sänger
Institut für Technische Chemie,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76021, Germany
Karlsruher Institut für Technologie (KIT),
P.O. Box 3640
,Karlsruhe 76021, Germany
Search for other works by this author on:
T. Jakobs,
T. Jakobs
Institut für Technische Chemie,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76021, Germany
Karlsruher Institut für Technologie (KIT),
P.O. Box 3640
,Karlsruhe 76021, Germany
Search for other works by this author on:
T. Kolb
T. Kolb
Institut für Technische Chemie,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76021, Germany
Karlsruher Institut für Technologie (KIT),
P.O. Box 3640
,Karlsruhe 76021, Germany
Search for other works by this author on:
G. Chaussonnet
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Kaiserstr. 12,
Karlsruhe 76131, Germany
e-mail: geoffroy.chaussonnet@kit.edu
Karlsruher Institut für Technologie (KIT),
Kaiserstr. 12,
Karlsruhe 76131, Germany
e-mail: geoffroy.chaussonnet@kit.edu
R. Koch
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Karlsruher Institut für Technologie (KIT),
Kaiserstr. 12
,Karlsruhe 76131, Germany
H.-J. Bauer
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Karlsruher Institut für Technologie (KIT),
Kaiserstr. 12
,Karlsruhe 76131, Germany
A. Sänger
Institut für Technische Chemie,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76021, Germany
Karlsruher Institut für Technologie (KIT),
P.O. Box 3640
,Karlsruhe 76021, Germany
T. Jakobs
Institut für Technische Chemie,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76021, Germany
Karlsruher Institut für Technologie (KIT),
P.O. Box 3640
,Karlsruhe 76021, Germany
T. Kolb
Institut für Technische Chemie,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76021, Germany
Karlsruher Institut für Technologie (KIT),
P.O. Box 3640
,Karlsruhe 76021, Germany
1Corresponding author.
Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received August 7, 2017; final manuscript received November 9, 2017; published online January 30, 2018. Assoc. Editor: Arindam Banerjee.
J. Fluids Eng. Jun 2018, 140(6): 061301 (13 pages)
Published Online: January 30, 2018
Article history
Received:
August 7, 2017
Revised:
November 9, 2017
Citation
Chaussonnet, G., Koch, R., Bauer, H., Sänger, A., Jakobs, T., and Kolb, T. (January 30, 2018). "Smoothed Particle Hydrodynamics Simulation of an Air-Assisted Atomizer Operating at High Pressure: Influence of Non-Newtonian Effects." ASME. J. Fluids Eng. June 2018; 140(6): 061301. https://doi.org/10.1115/1.4038753
Download citation file:
Get Email Alerts
Cited By
Related Articles
Modeling Wall Film Formation and Breakup Using an Integrated Interface-Tracking/Discrete-Phase Approach
J. Eng. Gas Turbines Power (March,2011)
Onset of Flash Atomization in a Propellant Microjet
J. Fluids Eng (September,2015)
Numerical Simulation of Liquid Jet Atomization Including Turbulence Effects
J. Eng. Gas Turbines Power (October,2007)
A Comparison of Single and Multiphase Jets in a Crossflow Using Large Eddy Simulations
J. Eng. Gas Turbines Power (January,2007)
Related Proceedings Papers
Related Chapters
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Numerical Simulation of Nucleate Spray Cooling: Effect of Droplet Impact on Bubble Growth and Heat Transfer in a Thin Liquid Film
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
A New Boom Mechanism Design for Corn Sprayer
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)