Cavitation leads to rapid degassing of fluids. Up to date, there is a lack of model approaches of cavitation-induced degassing. The aim of the present study is to gain a more thorough knowledge of the process. Therefore, the relation between cavitation intensity and air release is investigated experimentally for an orifice flow as function of cavitation number. For this, shadowgraphy imaging is used to visualize regions of steam and air volume downstream of the orifice. Analysis of the images shows a strongly nonlinear scaling behavior for both cavitation intensity and air release as a function of cavitation number. Three distinct regimes could be identified for cavitation-induced gas release. While an exponential scaling was found at high cavitation intensities, degassing rates appear to be nearly constant in the intermediate cavitation number range. Empirical scaling laws are given here that may serve as first model approach for the prediction of cavitation induced air release behind flow constrictions.

References

1.
Dular
,
M.
,
Griessler-Bulc
,
T.
,
Gutierrez-Aguirre
,
I.
,
Heath
,
E.
,
Kosjek
,
T.
,
Krivograd Klemencic
,
A.
,
Oder
,
M.
,
Petkovsek
,
M.
,
Racki
,
N.
,
Ravnikar
,
M.
,
Sarc
,
A.
,
Sirok
,
B.
,
Zupanc
,
M.
,
Zitnik
,
M.
, and
Kompare
,
B.
,
2016
, “
Use of Hydrodynamic Cavitation in (Waste)Water Treatment
,”
Ultrason. Sonochem.
,
29
, pp.
577
588
.
2.
Gogate
,
P. R.
, and
Bhosale
,
G. S.
,
2013
, “
Comparison of Effectiveness of Acoustic and Hydrodynamic Cavitation in Combined Treatment Schemes for Degradation of Dye Wastewaters
,”
Chem. Eng. Process.: Process Intensif.
,
71
, pp.
59
69
.
3.
Kumar
,
P. S.
,
Kumar
,
M. S.
, and
Pandit
,
A.
,
2000
, “
Experimental Quantification of Chemical Effects of Hydrodynamic Cavitation
,”
Chem. Eng. Sci.
,
55
(
9
), pp.
1633
1639
.
4.
Hsieh
,
D.-Y.
, and
Plesset
,
M. S.
,
1961
, “
Theory of Rectified Diffusion of Mass Into Gas Bubbles
,”
J. Acoust. Soc. Am.
,
33
(
2
), pp.
206
215
.
5.
Crum
,
L.
,
1984
, “
Acoustic Cavitation Series: Part Five Rectified Diffusion
,”
Ultrasonics
,
22
(
9
), pp.
215
223
.
6.
Naji Meidani
,
A.
, and
Hasan
,
M.
,
2004
, “
Mathematical and Physical Modelling of Bubble Growth Due to Ultrasound
,”
Appl. Math. Model.
,
28
(
4
), pp.
333
351
.
7.
Leong
,
T.
,
Wu
,
S.
,
Kentish
,
S.
, and
Ashokkumar
,
M.
,
2010
, “
Growth of Bubbles by Rectified Diffusion in Aqueous Surfactant Solutions
,”
J. Phys. Chem. C
,
114
(
47
), pp.
20141
20145
.
8.
Peters
,
F.
, and
Els
,
C.
,
2012
, “
An Experimental Study on Slow and Fast Bubbles in Tap Water
,”
Chem. Eng. Sci.
,
82
, pp.
194
199
.
9.
Nüllig
,
M.
, and
Peters
,
F.
,
2013
, “
Diffusion of Small Gas Bubbles Into Liquid Studied by the Rotary Chamber Technique
,”
Chem. Ing. Tech.
,
85
(
7
), pp.
1074
1079
.
10.
Mørch
,
K. A.
,
2015
, “
Cavitation Inception From Bubble Nuclei
,”
Interface Focus
,
5
(
5
), p.
20150006
.
11.
Schrank
,
K.
,
Murrenhoff
,
H.
, and
Stammen
,
C.
,
2013
, “Measurements of Air Absorption and Air Release Characteristics in Hydraulic Oils at Low Pressure,”
ASME
Paper No. FPMC2013-4450.
12.
Yan
,
Z.
,
Liu
,
J.
,
Chen
,
B.
,
Cheng
,
X.
, and
Yang
,
J.
,
2015
, “
Fluid Cavitation Detection Method With Phase Demodulation of Ultrasonic Signal
,”
Appl. Acoust.
,
87
, pp.
198
204
.
13.
Jaworek
,
A.
,
Krupa
,
A.
, and
Trela
,
M.
,
2004
, “
Capacitance Sensor for Void Fraction Measurement in Water/Steam Flows
,”
Flow Meas. Instrum.
,
15
(
5–6
), pp.
317
324
.
14.
Canière
,
H.
,
T'Joen
,
C.
,
Willockx
,
A.
, and
De Paepe
,
M.
,
2008
, “
Capacitance Signal Analysis of Horizontal Two-Phase Flow in a Small Diameter Tube
,”
Exp. Therm. Fluid Sci.
,
32
(
3
), pp.
892
904
.
15.
Yang
,
H.
,
Kim
,
D.
, and
Kim
,
M.
,
2003
, “
Void Fraction Measurement Using Impedance Method
,”
Flow Meas. Instrum.
,
14
(
4–5
), pp.
151
160
.
16.
Dunn
,
P. F.
,
Thomas
,
F. O.
,
Davis
,
M. P.
, and
Dorofeeva
,
I. E.
,
2010
, “
Experimental Characterization of Aviation-Fuel Cavitation
,”
Phys. Fluids
,
22
(
11
), p.
117102
.
17.
Dorofeeva
,
I.
,
Thomas
,
F.
, and
Dunn
,
P.
,
2009
, “
Cavitation of JP-8 Fuel in a Converging-Diverging Nozzle: Experiments and Modeling
,”
Seventh International Symposium on Cavitation
, Ann Arbor, MI, Aug. 16–20.https://deepblue.lib.umich.edu/handle/2027.42/84300
18.
Ji
,
B.
,
Luo
,
X.
,
Wang
,
X.
,
Peng
,
X.
,
Wu
,
Y.
, and
Xu
,
H.
,
2011
, “
Unsteady Numerical Simulation of Cavitating Turbulent Flow Around a Highly Skewed Model Marine Propeller
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011102
.
19.
Pereira
,
F.
,
Salvatore
,
F.
, and
Di Felice
,
F.
,
2004
, “
Measurement and Modeling of Propeller Cavitation in Uniform Inflow
,”
ASME J. Fluids Eng.
,
126
(
4
), pp.
671
679
.
20.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Sirok
,
B.
,
2005
, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech.—B/Fluids
,
24
(
4
), pp.
522
538
.
21.
Martynov
,
S. B.
,
Mason
,
D. J.
, and
Heikal
,
M. R.
,
2006
, “
Numerical Simulation of Cavitation Flows Based on Their Hydrodynamic Similarity
,”
Int. J. Engine Res.
,
7
(
3
), pp.
283
296
.
22.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.
23.
Lau
,
Y.
,
Deen
,
N.
, and
Kuipers
,
J.
,
2013
, “
Development of an Image Measurement Technique for Size Distribution in Dense Bubbly Flows
,”
Chem. Eng. Sci.
,
94
, pp.
20
29
.
24.
Bröder
,
D.
, and
Sommerfeld
,
M.
,
2007
, “
Planar Shadow Image Velocimetry for the Analysis of the Hydrodynamics in Bubbly Flows
,”
Meas. Sci. Technol.
,
18
(
8)
, pp.
2513
2528
.
25.
Duke
,
D. J.
,
Swantek
,
A. B.
,
Kastengren
,
A. L.
, and
Powell
,
C. F.
,
2015
, “
X-Ray Diagnostics for Cavitating Nozzle Flow
,”
J. Phys.: Conf. Ser.
,
656
, p.
012110
.
26.
Iben
,
U.
,
Wolf
,
F.
,
Freudigmann
,
H.-A.
,
Fröhlich
,
J.
, and
Heller
,
W.
,
2015
, “
Optical Measurements of Gas Bubbles in Oil behind a Cavitating Micro-Orifice Flow
,”
Exp. Fluids
,
56
(
6
), p. 114.
27.
Freudigmann
,
H.-A.
,
Iben
,
U.
, and
Pelz
,
P. F.
,
2015
, “
Air Release Measurements of V-Oil 1404 Downstream of a Micro Orifice at Chocked Flow Conditions
,”
J. Phys.: Conf. Ser.
,
656
(1), p. 012113.
28.
Freudigmann
,
H.-A.
,
Dörr
,
A.
,
Iben
,
U.
, and
Pelz
,
P. F.
,
2017
, “
Modeling of Cavitation-Induced Air Release Phenomena in Micro-Orifice Flows
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111301
.
29.
ISO,
2008
, “Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO/IEC Guide 98-3:2008
.https://www.iso.org/standard/50461.html
30.
Nurick
,
W. H.
,
1976
, “
Orifice Cavitation and Its Effect on Spray Mixing
,”
ASME J. Fluids Eng.
,
98
(4), pp.
681
687
.
31.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
1978
,
Bubbles, Drops, and Particles
,
Academic Press
,
New York
.
32.
Kowalski
,
K.
,
Pollak
,
S.
, and
Hussong
,
J.
,
2017
, “
Experimental Investigation of Cavitation Induced Air Release
,”
EPJ Web of Conferences
,
143
, p.
02054
.
34.
Iben
,
U.
,
Morozov
,
A.
,
Winklhofer
,
E.
, and
Wolf
,
F.
,
2010
, “
Laser-Pulse Interferometry Applied to High-Pressure Fluid Flow in Micro Channels
,”
Exp. Fluids
,
50
(
3
), pp.
597
611
.
35.
Tomov
,
P.
,
Khelladi
,
S.
,
Ravelet
,
F.
,
Sarraf
,
C.
,
Bakir
,
F.
, and
Vertenoeuil
,
P.
,
2016
, “
Experimental Study of Aerated Cavitation in a Horizontal Venturi Nozzle
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
85
95
.
36.
Shames
,
I. H.
,
1992
,
Mechanics of Fluids
, 3rd ed., McGraw-Hill, Singapore.
You do not currently have access to this content.