Deformation and mixing of solid particles in porous materials are typical consequences under shock compression and are usually considered as the major contributors to energy dissipation during shock compression while a contribution from the interaction between the solid and gaseous phases attracts less attention. The present work illustrates the phase interaction process by mesomechanical hydrocode modeling under different conditions of the interstitial gaseous phase. A two-phase analytical approach focusing on the role of thermal nonequilibrium between the phases and an advanced two-phase model complement the mesomechanical analysis by demonstrating a similar trend due to the effect of pressure in the interstitial air.

References

1.
Zeldovich
,
Y. B.
, and
Raiser
,
Y. P.
,
1967
,
Physics of Shock Waves and High Temperature Hydrodynamic Phenomena
,
Academic Press
,
New York
.
2.
Vogler
,
T. J.
,
Lee
,
M. Y.
, and
Grady
,
D. E.
,
2007
, “
Static and Dynamic Compaction of Ceramic Powders
,”
Int. J. Solids Struct.
,
44
(
2
), pp.
636
658
.
3.
Arlery
,
M.
,
Gardou
,
M.
,
Fleureau
,
J. M.
, and
Mariotti
,
C.
,
2010
, “
Dynamic Behaviour of Dry and Water-Saturated Sand Under Planar Shock Conditions
,”
Int. J. Impact Eng.
,
37
(
1
), pp.
1
10
.
4.
Resnyansky
,
A. D.
, and
Bourne
,
N. K.
,
2004
, “
Shock-Wave Compression of a Porous Material
,”
J. Appl. Phys.
,
95
(
4
), pp.
1760
1769
.
5.
Neal
,
W. D.
,
Chapman
,
D. J.
, and
Proud
,
W. G.
,
2012
, “
Shock-Wave Stability in Quasi-Mono-Disperse Granular Materials
,”
Eur. Phys. J.: Appl. Phys.
,
57
(
3
), p.
031001
.
6.
Trunin
,
R. F.
,
Simakov
,
G. V.
,
Sutulov
,
Y. N.
,
Medvedev
,
A. B.
,
Rogozhkin
,
B. D.
, and
Fedorov
,
Y. E.
,
1989
, “
Compressibility of Porous Metals in Shock Waves
,”
Sov. Phys. JETP
,
69
(
3
), pp.
580
588
.http://www.jetp.ac.ru/cgi-bin/dn/e_069_03_0580.pdf
7.
Trunin
,
R. F.
,
Simakov
,
G. V.
, and
Podurets
,
M. A.
,
1971
, “
Compression of Porous Quartz by Strong Shock Waves
,”
Izv. Earth Phys.
, (2), pp.
102
106
.
8.
van Thiel
,
M.
,
Shaner
,
J.
, and
Salinas
,
E.
, eds.,
1977
, “
Compendium of Shock Wave Data
,”
University of California
,
Livermore, CA
, Report No.
UCRL-50108
.http://www.dtic.mil/dtic/tr/fulltext/u2/b041507.pdf
9.
Lotrich
,
V. F.
,
Akashi
,
T.
, and
Sawaoka
,
A. B.
,
1986
, “
A Model Describing the Inhomogeneous Temperature Distribution During Dynamic Compaction of Ceramic Powders
,”
Metallurgical Applications of Shock-Wave and High-Strain Rate Phenomena
,
L. E.
Murr
,
K. P.
Staudhammer
, and
M. A.
Meyers
, eds.,
Marcel Dekker, Inc.
,
New York
, pp.
277
292
.
10.
Williamson
,
R. L.
,
1998
, “
Parametric Studies of Dynamic Powder Consolidation Using a Particle-Level Numerical Model
,”
J. Appl. Phys.
,
68
(
3
), pp.
1287
1296
.
11.
Kobayashi
,
T.
,
2013
, “
Radiation of Light From Powder Materials Under Shock Compression
,”
Chem. Phys. Lett.
,
565
, pp.
35
39
.
12.
Resnyansky
,
A. D.
,
2010
, “
Constitutive Modeling of Shock Response of Phase-Transforming and Porous Materials With Strength
,”
J. Appl. Phys.
,
108
(
8
), p.
083534
.
13.
Resnyansky
,
A. D.
,
2016
, “
Two-Zone Hugoniot for Porous Materials
,”
Phys. Rev. B
,
93
(
5
), p.
054103
.
14.
Britan
,
A.
,
Shapiro
,
H.
,
Liverts
,
M.
,
Ben-Dor
,
G.
,
Chinnayya
,
A.
, and
Hadjadj
,
A.
,
2013
, “
Macromechanical Modelling of Blast Wave Mitigation in Foams—Part I: Review of Available Experiments and Models
,”
Shock Waves
,
23
(
1
), pp.
5
23
.
15.
Romenski
,
E.
,
Resnyansky
,
A. D.
, and
Toro
,
E. F.
,
2007
, “
Conservative Hyperbolic Formulation for Compressible Two-Phase Flow With Different Phase Pressures and Temperatures
,”
Quart. Appl. Math.
,
65
(
2
), pp.
259
279
.
16.
Bell
,
R. L.
,
Baer
,
M. R.
,
Brannon
,
R. M.
,
Crawford
,
D. A.
,
Elrick
,
M. G.
,
Hertel
,
E. S.
, Jr.,
Schmitt
,
R. G.
,
Silling
,
S. A.
, and
Taylor
,
P. A.
,
2006
,
CTH User's Manual and Input Instructions Version 7.1
,
Sandia National Laboratories
,
Albuquerque, NM
.
17.
Resnyansky
,
A. D.
,
2012
, “CTH Implementation of a Two-Phase Material Model With Strength: Application to Porous Materials,” Defence Science and Technology Organisation, Edinburgh, Australia, Report No.
DSTO-TR-2728
.http://dspace.dsto.defence.gov.au/dspace/handle/dsto/10507
18.
Resnyansky
,
A. D.
,
2008
, “
Constitutive Modelling of Hugoniot for a Highly Porous Material
,”
J. Appl. Phys.
,
104
(
9
), p.
093511
.
19.
Dwivedi
,
S. K.
,
Pei
,
L.
, and
Teeter
,
R.
,
2015
, “
Two-Dimensional Mesoscale Simulations of Shock Response of Dry Sand
,”
J. Appl. Phys.
,
117
(
8
), p.
085902
.
20.
Steinberg
,
D. J.
,
Cochran
,
S. G.
, and
Guinan
,
M. W.
,
1980
, “
A Constitutive Model for Metals Applicable at High-Strain Rate
,”
J. Appl. Phys.
,
51
(
3
), pp.
1498
1504
.
21.
Taylor
,
P. A.
,
1992
, “CTH Reference Manual: The Steinberg-Guinan-Lund Viscoplastic Model,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND 92-0716.
22.
Johnson
,
J. D.
,
1994
, “The SESAME Database,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-94-1451.
23.
Sun
,
J.
,
Battaglia
,
F.
, and
Subramaniam
,
S.
,
2007
, “
Hybrid Two-Fluid DEM Simulation of Gas-Solid Fluidized Beds
,”
ASME J. Fluids Eng.
,
129
(
11
), pp.
1394
1403
.
24.
Trunin
,
R. F.
,
1998
,
Shock Compression of Condensed Materials
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.