Hydraulic turbines are more frequently used for power regulation and thus spend more time providing spinning reserve for electrical grids. Spinning reserve requires the turbine to operate at its synchronous rotation speed, ready to be linked to the grid in what is termed the speed-no-load (SNL) condition. The turbine's runner flow in SNL is characterized by low discharge and high swirl leading to low-frequency high amplitude pressure fluctuations potentially leading to blade damage and more maintenance downtime. For low-head hydraulic turbines operating at SNL, the large pressure fluctuations in the runner are sometimes attributed to rotating stall. Using embedded pressure transducer measurements, mounted on runner blades of a model propeller turbine, and numerical flow simulations, this paper provides an insight into the inception mechanism associated with rotating stall in SNL conditions. The results offer evidence that the rotating stall is in fact associated with an unstable vorticity distribution not associated with the runner blades themselves.
Skip Nav Destination
Article navigation
November 2018
Research-Article
Experimental and Numerical Investigations on the Origins of Rotating Stall in a Propeller Turbine Runner Operating in No-Load Conditions
Sébastien Houde,
Sébastien Houde
Hydraulic Machines Laboratory,
Faculté des sciences et de génie,
Laval University,
1341, Pavillon Adrien-Pouliot,
1065 rue de la médecine,
Québec, QC G1V 0A6, Canada
e-mail: sebastien.houde@gmc.ulaval.ca
Faculté des sciences et de génie,
Laval University,
1341, Pavillon Adrien-Pouliot,
1065 rue de la médecine,
Québec, QC G1V 0A6, Canada
e-mail: sebastien.houde@gmc.ulaval.ca
Search for other works by this author on:
Guy Dumas,
Guy Dumas
Laboratoire de Mécanique des
Fluides Numérique,
Faculté des sciences et de génie,
Laval University,
Pavillon Adrien-Pouliot,
1065 rue de la médecine,
Québec, QC G1V 0A6, Canada
e-mail: guy.dumas@gmc.ulaval.ca
Fluides Numérique,
Faculté des sciences et de génie,
Laval University,
Pavillon Adrien-Pouliot,
1065 rue de la médecine,
Québec, QC G1V 0A6, Canada
e-mail: guy.dumas@gmc.ulaval.ca
Search for other works by this author on:
Claire Deschênes
Claire Deschênes
Hydraulic Machines Laboratory,
Faculté des sciences et de génie,
Laval University,
1341, Pavillon Adrien-Pouliot,
1065 rue de la médecine,
Québec, QC G1V 0A6, Canada
e-mail: Claire.Deschenes@gmc.ulaval.ca
Faculté des sciences et de génie,
Laval University,
1341, Pavillon Adrien-Pouliot,
1065 rue de la médecine,
Québec, QC G1V 0A6, Canada
e-mail: Claire.Deschenes@gmc.ulaval.ca
Search for other works by this author on:
Sébastien Houde
Hydraulic Machines Laboratory,
Faculté des sciences et de génie,
Laval University,
1341, Pavillon Adrien-Pouliot,
1065 rue de la médecine,
Québec, QC G1V 0A6, Canada
e-mail: sebastien.houde@gmc.ulaval.ca
Faculté des sciences et de génie,
Laval University,
1341, Pavillon Adrien-Pouliot,
1065 rue de la médecine,
Québec, QC G1V 0A6, Canada
e-mail: sebastien.houde@gmc.ulaval.ca
Guy Dumas
Laboratoire de Mécanique des
Fluides Numérique,
Faculté des sciences et de génie,
Laval University,
Pavillon Adrien-Pouliot,
1065 rue de la médecine,
Québec, QC G1V 0A6, Canada
e-mail: guy.dumas@gmc.ulaval.ca
Fluides Numérique,
Faculté des sciences et de génie,
Laval University,
Pavillon Adrien-Pouliot,
1065 rue de la médecine,
Québec, QC G1V 0A6, Canada
e-mail: guy.dumas@gmc.ulaval.ca
Claire Deschênes
Hydraulic Machines Laboratory,
Faculté des sciences et de génie,
Laval University,
1341, Pavillon Adrien-Pouliot,
1065 rue de la médecine,
Québec, QC G1V 0A6, Canada
e-mail: Claire.Deschenes@gmc.ulaval.ca
Faculté des sciences et de génie,
Laval University,
1341, Pavillon Adrien-Pouliot,
1065 rue de la médecine,
Québec, QC G1V 0A6, Canada
e-mail: Claire.Deschenes@gmc.ulaval.ca
1Corresponding author.
Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received November 1, 2017; final manuscript received February 8, 2018; published online May 28, 2018. Assoc. Editor: Shawn Aram.
J. Fluids Eng. Nov 2018, 140(11): 111104 (18 pages)
Published Online: May 28, 2018
Article history
Received:
November 1, 2017
Revised:
February 8, 2018
Citation
Houde, S., Dumas, G., and Deschênes, C. (May 28, 2018). "Experimental and Numerical Investigations on the Origins of Rotating Stall in a Propeller Turbine Runner Operating in No-Load Conditions." ASME. J. Fluids Eng. November 2018; 140(11): 111104. https://doi.org/10.1115/1.4039713
Download citation file:
Get Email Alerts
Related Articles
Investigations of Spoilers to Mitigate Columnar Vortices in Propeller Turbines at Speed-No-Load Based on Steady and Unsteady Flow Simulations
J. Fluids Eng (November,2023)
Unsteady Flow and Pressure Pulsation Characteristics Analysis of Rotating Stall in Centrifugal Pumps Under Off-Design Conditions
J. Fluids Eng (February,2018)
Investigations of Compressible Turbulent Flow in a High-Head Francis Turbine
J. Fluids Eng (January,2018)
Related Proceedings Papers
Related Chapters
CFD Simulations of a Mixed-flow Pump Using Various Turbulence Models
Mixed-flow Pumps: Modeling, Simulation, and Measurements
Investigation of Reynolds Number Scale Effects on Propeller Tip Vortex Cavitation and Propeller-Induced Hull Pressure Fluctuations
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)