Turbulent flow through helical pipes with circular cross section is numerically investigated comparing with the experimental results obtained by our team. Numerical calculations are carried out for two helical circular pipes having different pitches and the same nondimensional curvature δ (=0.1) over a wide range of the Reynolds number from 3000 to 21,000 for torsion parameter β (=torsion /2δ  = 0.02 and 0.45). We numerically obtained the secondary flow, the axial flow and the intensity of the turbulent kinetic energy by use of three turbulence models incorporated in OpenFOAM. We found that the change to fully developed turbulence is identified by comparing experimental data with the results of numerical simulations using turbulence models. We also found that renormalization group (RNG) kε turbulence model can predict excellently the fully developed turbulent flow with comparison to the experimental data. It is found that the momentum transfer due to turbulence dominates the secondary flow pattern of the turbulent helical pipe flow. It is interesting that torsion effect is more remarkable for turbulent flows than laminar flows.

References

1.
Sreenivasan
,
K. R.
, and
Strykowski
,
P. J.
,
1983
, “
Stabilization Effects in Flow Through Helically Coiled Pipes
,”
Exp. Fluids
,
1
(
1
), pp.
31
36
.
2.
Webster
,
D. R.
, and
Humphrey
,
J. A. C.
,
1993
, “
Experimental Observations of Flow Instability in a Helical Coil
,”
ASME J. Fluids Eng.
,
115
(
3
), pp.
436
443
.
3.
Webster
,
D. R.
, and
Humphrey
,
J. A. C.
,
1997
, “
Traveling Wave Instability in Helical Coil Flow
,”
Phys. Fluids
,
9
(
2
), pp.
407
418
.
4.
Hüttl
,
T. J.
, and
Friedrich
,
R.
,
2001
, “
Direct Numerical Simulation of Turbulent Flows in Curved and Helically Coiled Pipes
,”
Comput. Fluids
,
30
(
5
), pp.
591
605
.
5.
Yamamoto
,
K.
,
Hayamizu
,
Y.
,
Matsuoka
,
Y.
, and
Ohta
,
K.
,
2005
, “
Measurement of Flow Velocity and Turbulence in a Helically Curved Pipe
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
71
(
705
), pp.
1278
1285
.
6.
Cioncolini
,
A.
, and
Santini
,
L.
,
2006
, “
An Experimental Investigation Regarding the Laminar to Turbulent Flow Transition in Helically Coiled Pipes
,”
Exp. Therm. Fluid Sci.
,
30
(
4
), pp.
367
380
.
7.
Ito
,
H.
,
1959
, “
Friction Factors for Turbulent Flow in Curved Pipes
,”
J. Basic Eng., Trans ASME D.
,
81
, pp.
123
134
.
8.
Hayamizu
,
Y.
,
Yamamoto
,
K.
,
Yanase
,
S.
,
Hyakutake
,
T.
,
Shinohara
,
T.
, and
Morita
,
S.
,
2008
, “
Experimental Study of the Flow in Helical Circular Pipes: Torsion Effect on the Flow Velocity and Turbulence
,”
J. Therm. Sci.
,
17
(
3
), pp.
193
198
.
9.
Datta
,
A. K.
,
Kouchi
,
T.
,
Hayamizu
,
Y.
,
Nagata
,
Y.
,
Yamamoto
,
K.
, and
Yanase
,
Y.
,
2016
, “
Numerical Study on the Instability of Helical Pipe Flow
,” Fluid Dyn. Res. (submitted).
10.
Wang
,
C. Y.
,
1981
, “
On the Low-Reynolds-Number Flow in a Helical Pipe
,”
J. Fluid Mech.
,
108
, pp.
185
194
.
11.
Germano
,
M.
,
1982
, “
On the Effect of Torsion on a Helical Pipe Flow
,”
J. Fluid Mech.
,
125
, pp.
1
8
.
12.
Kao
,
H. C.
,
1987
, “
Torsion Effect on Fully Developed Flow in a Helical Pipe
,”
J. Fluid Mech.
,
184
, pp.
335
356
.
13.
Xie
,
D. G.
,
1990
, “
Torsion Effect on Secondary Flow in a Helical Pipe
,”
Int. J. Heat Fluid Flow
,
11
(
2
), pp.
114
119
.
14.
Tuttle
,
E. R.
,
1990
, “
Laminar Flow in Twisted Pipes
,”
J. Fluid Mech.
,
219
, pp.
545
570
.
15.
Liu
,
S.
, and
Masliyah
,
J. H.
,
1993
, “
Axially Invariant Laminar Flow in Helical Pipes With a Finite Pitch
,”
J. Fluid Mech.
,
251
, pp.
315
353
.
16.
Yamamoto
,
K.
,
Yanase
,
S.
, and
Yoshida
,
T.
,
1994
, “
Torsion Effect on the Flow in a Helical Pipe
,”
Fluid Dyn. Res.
,
14
(
5
), pp.
259
273
.
17.
Yamamoto
,
K.
,
Akita
,
T.
,
Ikeuchi
,
H.
, and
Kita
,
Y.
,
1995
, “
Experiment Study of the Flow in a Helical Circular Tube
,”
Fluid Dyn. Res.
,
16
(4), pp. 237–249.http://iopscience.iop.org/article/10.1016/0169-5983(95)00022-6
18.
Yamamoto
,
K.
,
Yanase
,
S.
, and
Jiang
,
R.
,
1998
, “
Stability of the Flow in a Helical Tube
,”
Fluid Dyn. Res.
,
22
(3), pp.
153
170
.
19.
OpenFOAM
,
2014
, “
OpenFOAM 2.3.0 User Guide
,” OpenCFD Ltd., Bracknell, UK, http://www.openfoam.com/
20.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(2), pp.
131
137
.
21.
Lien
,
F. S.
,
Chen
,
W. L.
, and
Leschziner
,
M. A.
,
1996
, “
Low Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations
,”
Engineering Turbulence Modelling and Experiments
, Vol.
3
, W. Rodi and G. Bergeles, eds., Elsevier Science B. V., Amsterdam, The Netherlands, pp.
91
100
.
22.
Etemad
,
S.
,
Sunden
,
B.
, and
Daunius
,
O.
,
2006
, “
Turbulent Flow and Heat Transfer in a Square-Sectioned U-Bend
,”
Prog. Comput. Fluid Dyn.
,
6
(
1–3
), pp.
89
100
.
23.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence—I: Basic Theory
,”
J. Sci. Comput.
,
1
(1), pp.
3
51
.
24.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(10), pp.
1787
1806
.
25.
Wada
,
K.
,
2010
, “
Turbulence Measurement of the Flow in a Helical Circular Pipes
,” Master thesis, Okayama University, Okayama, Japan (in Japanese).
26.
Lesieur
,
M.
,
Metais
,
O.
, and
Comte
,
P.
,
2005
,
Large-Eddy Simulation of Turbulence
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.