The principal purpose of this study is to understand the entropy generation rate in bypass, transitional, boundary-layer flow better. The experimental work utilized particle image velocimetry (PIV) and particle tracking velocimetry (PTV) to measure flow along a flat plate. The flow past the flat plate was under the influence of a negligible “zero” pressure gradient, followed by the installation of an adverse pressure gradient. Further, the boundary layer flow was artificially tripped to turbulence (called “bypass” transition) by means of elevated freestream turbulence. The entropy generation rate was seen to behave similar to that of published computational fluid dynamics (CFD) and direct numerical simulation (DNS) results. The observations from this work show the relative decrease of viscous contributions to entropy generation rate through the transition process, while the turbulent contributions of entropy generation rate greatly increase through the same transitional flow. A basic understanding of entropy generation rate over a flat plate is that a large majority of the contributions come within a wall coordinate less than 30. However, within the transitional region of the boundary layer, a tradeoff between viscous and turbulent dissipation begins to take place where a significant amount of the entropy generation rate is seen out toward the boundary layer edge.

References

1.
Hill
,
J. L.
,
2008
, “
Sustainable? Says Who?
,”
Mech. Eng.
,
130
(
9
), p.
10
.
2.
Rose
,
M. G.
,
1998
, “
What Should We Measure? An Aero-Engine Turbine Aero-Dynamic Perspective
,”
XIV Bi-Annual Symposium on Measurement Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines
, Limerick, Ireland.
3.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
4.
Mayes
,
C.
,
Schlichting
,
H.
,
Krause
,
E.
,
Oertel
,
H.
, and
Gersten
,
K.
,
2003
,
Boundary-Layer Theory
(Physic and Astronomy),
Springer, Berlin/Heidelberg
.
5.
Reynolds
,
W. C.
,
1968
,
Thermodynamics
, 2nd ed.,
McGraw-Hill
, New York.
6.
Gilmore
,
R.
,
1996
,
The Shadow of Entropy, Scrooge’s Cryptic Carol
,
Copernicus Springer-Verlag
, New York.
7.
Bradshaw
,
P.
,
1967
, “
The Turbulence Structure of Equilibrium Boundary Layers
,”
J. Fluid Mech.
,
29
(
4
), pp.
625
645
.
8.
Narasimha
,
R.
,
1985
, “
The Laminar-Turbulent Transition Zone in the Boundary Layer
,”
Prog. Aerosp. Sci.
,
22
(
1
), pp.
29
80
.
9.
Suder
,
K. L.
,
O’Brien
,
J. E.
, and
Reshotko
,
E.
,
1988
, “
Experimental Study of Bypass Transition in a Boundary Layer
,”
NASA Tech Memo No. 100913
.
10.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
537
.
11.
Ames
,
F. E.
, and
Plesniak
,
M. W.
,
1997
, “
The Influence of Large-Scale, High-Intensity Turbulence on Vane Aerodynamic Losses, Wake Growth and the Exit Turbulence Parameters
,”
ASME J. Turbomach.
,
119
(
2
), pp.
182
192
.
12.
Wang
,
H. P.
,
Goldstein
,
R. J.
, and
Olson
,
S. J.
,
1999
, “
Effect of High Free-Stream Turbulence With Large Length Scale on Blade Heat/Mass Transfer
,”
ASME J. Turbomach.
,
121
(
2
), pp.
217
224
.
13.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
14.
Matsubara
,
M.
, and
Alfredsson
,
P. H.
,
2001
, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid Mech.
,
430
, pp.
149
168
.
15.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Pratt
,
C. M.
,
2003
, “
Conditional Sampling in a Transitional Boundary Layer Under High Freestream Turbulence Conditions
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
28
37
.
16.
Brandt
,
L.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2004
, “
Transition in Boundary Layers Subject to Free-Stream Turbulence
,”
J. Fluid Mech.
,
517
, pp.
167
198
.
17.
Schlatter
,
P.
,
Brandt
,
L.
,
De Lange
,
H. C.
, and
Henningson
,
D. S.
,
2008
, “
On Streak Breakdown in Bypass Transition
,”
Phys. Fluids
,
20
, p.
101505
.
18.
Walsh
,
E.
,
Myose
,
R.
, and
Davies
,
M.
,
2002
, “
A Prediction Method for the Local Entropy Generation Rate in a Transitional Boundary Layer With a Free Stream Pressure Gradient
,”
ASME
Paper No. GT2002-30231.
19.
Griffin
,
P. C.
,
Davies
,
M. R. D.
,
O’Donnell
,
F. K.
, and
Walsh
,
E.
,
2002
, “
The Effect of Reynolds Number, Compressibility and Free Stream Turbulence on Profile Entropy Generation Rate
,”
ASME
Paper No. GT2002-30330.
20.
Rotta
,
J. C.
,
1962
, “
Turbulent Boundary Layers in Incompressible Flow
,”
Prog. Aeronaut. Sci.
,
2
(
1
), pp.
1
195
.
21.
McEligot
,
D. M.
,
Walsh
,
E. J.
,
Laurien
,
E.
, and
Spalart
,
P. R.
,
2008
, “
Entropy Generation in the Viscous Parts of a Turbulent Boundary Layer
,”
ASME J. Fluids Eng.
,
130
(6), p.
061205
.
22.
Vukoslavcevic
,
P.
, and
Wallace
,
J. M.
,
2002
, “
The Simultaneous Measurement of Velocity and Temperature in Heated Turbulent Air Flow Using Thermal Anemometry
,”
Meas. Sci. Technol
,
13
(
10
), pp.
1615
1624
.
23.
Walsh
,
E. J.
,
McEligot
,
D. M.
,
Brandt
,
L.
, and
Schlatter
,
P.
,
2011
, “
Entropy Generation in a Boundary Layer Transitioning Under the Influence of Freestream Turbulence
,”
ASME J. Fluids Eng.
,
133
(
6
), p.
061203
.
24.
Dunham
,
J.
,
1972
, “
Predictions of Boundary Layer Transition on Turbomachinery Blades
,”
AGARD-Ograph
,
164
, pp.
55
71
.
25.
Abu Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
.
26.
McEligot
,
D. M.
, and
Walsh
,
E. J.
,
2014
, “
Entropy Generation in Steady Laminar Boundary Layers With Pressure Gradients
,”
Entropy
,
16
(
7
), p.
3808
.
27.
McIlroy
,
H. M.
, and
Budwig
,
R. S.
,
2007
, “
The Boundary Layer Over Turbine Blade Models With Realistic Rough Surfaces
,”
ASME J. Turbomach.
,
129
(
2
), pp.
318
330
.
28.
Gad-el-Hak
,
M.
, and
Corrsin
,
S.
,
1974
, “
Measurements of Nearly Isotropic Turbulence Behind a Uniform Jet Grid
,”
J. Fluid Mech.
,
62
(
1
), pp.
115
143
.
29.
McEligot
,
D. M.
, and
Eckelmann
,
H.
,
2006
, “
Laterally Converging Duct Flows: Part 3. Mean Turbulence Structure in the Viscous Layer
,”
J. Fluid Mech.
,
549
, pp.
25
59
.
30.
McEligot
,
D. M.
,
Brodkey
,
R. S.
, and
Eckelmann
,
H.
,
2009
, “
Laterally Converging Duct Flows—Part 4: Temporal Behavior in the Viscous Layer
,”
J. Fluid Mech.
,
634
, pp.
433
461
.
31.
Nolan
,
K. P.
,
Walsh
,
E. J.
,
McEligot
,
D. M.
, and
Volino
,
R. J.
,
2007
, “
Predicting Entropy Generation Rates in Transitional Boundary Layers Based on Intermittency
,”
ASME J. Turbomach.
,
129
(
3
), pp.
512
517
.
32.
Walsh
,
E. J.
,
Nolan
,
K. P.
,
McEligot
,
D. M.
,
Volino
,
R. J.
, and
Bejan
,
A.
,
2007
, “
Conditionally-Sampled Turbulent and Non-Turbulent Measurements of Entropy Generation Rate in the Transition Region of Boundary Layers
,”
ASME J. Fluids Eng.
,
129
(
5
), pp.
659
664
.
33.
Walsh
,
E. J.
, and
McEligot
,
D. M.
,
2008
, “
Relation of Entropy Generation to Wall ‘Laws’ for Turbulent Flows
,”
Int. J. Comput. Fluid Dyn.
,
22
(
10
), pp.
649
657
.
34.
Walsh
,
E. J.
, and
McEligot
,
D. M.
,
2009
, “
A New Correlation for Entropy Generation in Turbulent Shear Layers
,”
Int. J. Fluid Mech. Res.
,
36
(
6
), pp.
566
572
.
35.
Nolan
,
K. P.
, and
Walsh
,
E. J.
,
2012
, “
Particle Image Velocimetry Measurements of a Transitional Boundary Layer Under Free Stream Turbulence
,”
J. Fluid Mech.
,
702
, pp.
215
238
.
36.
Ghasemi
,
E.
,
McEligot
,
D. M.
,
Nolan
,
K. P.
,
Crepeau
,
J.
, and
Budwig
,
R. S.
,
2013
, “
Entropy Generation in a Transitional Boundary Layer Region Under the Influence of Freestream Turbulence Using Transitional RANS Models and DNS
,”
Int. Commun. Heat Mass Transfer
,
41
, pp.
10
16
.
37.
Owen
,
L. D.
,
Xing
,
T.
,
McEligot
,
D. M.
,
Crepeau
,
J.
, and
Budwig
,
R. S.
,
2013
, “
Laminar and Transitional Boundary Layer Entropy Generation Over a Flat Plate Under Favorable and Adverse Pressure Gradients
,”
ASME
Paper No. FEDSM2013-16314.
38.
George
,
J.
,
Owen
,
L. D.
,
Xing
,
T.
,
McEligot
,
D. M.
,
Crepeau
,
J. C.
,
Budwig
,
R. S.
, and
Nolan
,
K. P.
,
2014
, “
Entropy Generation in Bypass Transitional Boundary Layer Flows
,”
J. Hydrodyn. Ser. B
,
26
(
5
), pp.
669
680
.
39.
Nolan
,
K. P.
, and
Zaki
,
T. A.
,
2013
, “
Conditional Sampling of Transitional Boundary Layers in Pressure Gradients
,”
J. Fluid Mech.
,
728
, pp.
306
339
.
40.
Stoots
,
C. M.
,
Becker
,
S.
,
Condie
,
K. G.
,
Durst
,
F.
, and
McEligot
,
D. M.
,
2001
, “
A Large-Scale Matched-Index-of-Refraction Flow Facility for LDA Studies of Complex Geometries
,”
Exp. Fluids
,
30
(
4
), pp.
391
398
.
41.
Budwig
,
R. S.
,
1994
, “
Refractive Index Matching Methods for Liquid Flow Investigations
,”
Exp. Fluids
,
17
(
5
), pp.
350
355
.
42.
Budwig
,
R. S.
, and
Westin
,
R.
,
2011
, “
Measurement of Oil Properties
,” University of Idaho, Internal.
43.
Wilson
,
B. M.
, and
Smith
,
B. L.
,
2013
, “
Uncertainty on PIV Mean and Fluctuating Velocity Due to Bias and Random Errors
,”
Meas. Sci. Technol.
,
24
(
3
), p.
035302
.
44.
Uzol
,
O.
, and
Camci
,
C.
,
2001
, “
The Effect of Sample Size, Turbulence Intensity and the Velocity Field on the Experimental Accuracy of Ensemble Averaged PIV Measurements
,”
4th International Symposium on Particle Image Velocimetry
, Goettingen, Germany, Sept. 17–19.
45.
White
,
F.
,
2006
,
Viscous Fluid Flow
, 3rd ed.,
McGraw-Hill Higher Education
, New York.
46.
Arpaci
,
V. S.
, and
Larsen
,
P. S.
,
1984
,
Convection Heat Transfer
,
Prentice Hall
, Englewood Cliffs, NJ.
47.
Skifton
,
R. S.
,
2015
, “
Entropy Generation for a Bypass Transitional Boundary Layer and Improved Particle Image Velocimetry Measurements Using the Particle Density Information
,”
Ph.D. thesis
, University of Idaho, Moscow, ID.
48.
Klebanoff
,
P. S.
,
1971
, “
Effect of Freestream Turbulence on the Laminar Boundary Layer
,”
Bull. Am. Phys. Soc.
,
10
, p.
1323
.
49.
Johansson
,
T. G.
,
Medhi
,
F.
, and
Naughton
,
J. W.
,
2006
, “
Some Problems With Near-Wall Measurements and the Determination of Wall Shear Stress
,”
25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference
,
AIAA
Paper No. 2006-3833.
50.
Timmins
,
B. J.
,
Wilson
,
B. W.
,
Smith
,
B. L.
, and
Vlachos
,
P. P.
,
2012
, “
A Method for Automatic Estimation of Instantaneous Local Uncertainty in Particle Image Velocimetry Measurements
,”
Exp. Fluids
,
53
(
4
), pp.
1133
1147
.
51.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.