In this study, a double volute centrifugal pump with relative low efficiency and high vibration is redesigned to improve the efficiency and reduce the unsteady radial forces with the aid of unsteady computational fluid dynamics (CFD) analysis. The concept of entropy generation rate is applied to evaluate the magnitude and distribution of the loss generation in pumps and it is proved to be a useful technique for loss identification and subsequent redesign process. The local Euler head distribution (LEHD) can represent the energy growth from the blade leading edge (LE) to its trailing edge (TE) on constant span stream surface in a viscous flow field, and the LEHD is proposed to evaluate the flow field on constant span stream surfaces from hub to shroud. To investigate the unsteady internal flow of the centrifugal pump, the unsteady Reynolds-Averaged Navier–Stokes equations (URANS) are solved with realizable k–ε turbulence model using the CFD code FLUENT. The impeller is redesigned with the same outlet diameter as the baseline pump. A two-step-form LEHD is recommended to suppress flow separation and secondary flow encountered in the baseline impeller in order to improve the efficiency. The splitter blades are added to improve the hydraulic performance and to reduce unsteady radial forces. The original double volute is substituted by a newly designed single volute one. The hydraulic efficiency of the centrifugal pump based on redesigned impeller with splitter blades and newly designed single volute is about 89.2%, a 3.2% higher than the baseline pump. The pressure fluctuation in the volute is significantly reduced, and the mean and maximum values of unsteady radial force are only 30% and 26.5% of the values for the baseline pump.

References

1.
Yao
,
Z.
,
Wang
,
F.
,
Qu
,
L.
,
Xiao
,
R.
,
He
,
C.
, and
Wang
,
M.
,
2011
, “
Experimental Investigation of Time-Frequency Characteristics of Pressure Fluctuations in a Double-Suction Centrifugal Pump
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101303
.
2.
Kaupert
,
K. A.
, and
Staubli
,
T.
,
1999
, “
The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller. Part I: Influence of the Volute
,”
ASME J. Fluids Eng.
,
121
(
3
), pp.
621
629
.
3.
Majidi
,
K.
,
2005
, “
Numerical Study of Unsteady Flow in a Centrifugal Pump
,”
ASME J. Turbomach.
,
127
, pp.
363
371
.
4.
Gonzalez
,
J.
,
Fernández
,
J.
,
Blanco
,
E.
, and
Santolaria
,
C.
,
2002
, “
Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
348
355
.
5.
Gonzalez
,
J.
,
Parrondo
,
J.
,
Santolaria
,
C.
, and
Blanco
,
E.
,
2006
, “
Steady and Unsteady Radial Forces for a Centrifugal Pump With Impeller to Tongue Gap Variation
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
454
462
.
6.
Barrio
,
R.
,
Blanco
,
E.
,
Parrondo
,
J.
,
Gonzalez
,
J.
, and
Fernandez
,
J.
,
2008
, “
The Effect of Impeller Cutback on the Fluid-Dynamic Pulsations and Load at the Blade-Passing Frequency in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111021
.
7.
Ye
,
L. T.
,
Yuan
,
S. Q.
,
Zhang
,
J. F.
, and
Yuan
,
Y.
,
2012
, “
Effects of Splitter Blades on the Unsteady Flow of a Centrifugal Pump
,”
ASME
Paper No. FEDSM2012-72155.
8.
Solis
,
M.
,
Bakir
,
F.
, and
Khelladi
,
S.
,
2009
, “
Pressure Fluctuations Reduction in Centrifugal Pumps: Influence of Impeller geometry and Radial Gap
,”
ASME
Paper No. FEDSM2009-78240.
9.
Khalifa
,
A. E.
,
Al-Qutub
,
A. M.
, and
Ben-Mansour
,
R.
,
2011
, “
Study of Pressure Fluctuations and Induced Vibration at Blade-Passing Frequencies of a Double Volute Pump
,”
Arabian J. Sci. Eng.
,
36
(
7
), pp.
1333
1345
.
10.
Al-Qutub
,
A. M.
,
Khalifa
,
A. E.
, and
Al-Sulaiman
,
F. A.
,
2012
, “
Exploring the Effect of V-Shaped Cut at Blade Exit of a Double Volute Centrifugal Pump
,”
ASME J. Pressure Vessel Technol.
,
134
(
2
), p.
021301
.
11.
Borges
,
J. E.
,
1993
, “
A Proposed Through Flow Inverse Method for the Design of Mixed Flow Pumps
,”
Int. J. Numer. Methods Fluids
,
17
(
12
), pp.
1097
1114
.
12.
Zangeneh
,
M.
,
Goto
,
A.
, and
Harada
,
H.
,
1998
, “
On the Design Criteria for Suppression of Secondary Flows in Centrifugal and Mixed Flow Impellers
,”
ASME J. Turbomach.
,
120
(
4
), pp.
723
735
.
13.
Páscoa
,
J. C.
,
Mendes
,
A. C.
, and
Gato
,
L. M. C.
,
2009
, “
A Fast Iterative Inverse Method for Turbomachinery Blade Design
,”
Mech. Res. Commun.
,
36
(
5
), pp.
630
637
.
14.
Kruyt
,
N. P.
, and
Westra
,
R. W.
,
2014
, “
On the Inverse Problem of Blade Design for Centrifugal Pumps and Fans
,”
Inverse Prob.
,
30
(
6
), p.
065003
.
15.
Bing
,
H.
, and
Cao
,
S. L.
,
2013
, “
Three-Dimensional Design Method for Mixed-Flow Pump Blades With Controllable Blade Wrap Angle
,”
Proc. Inst. Mech. Eng. Part A-J. Power Energy
,
227
(
5
), pp.
567
584
.
16.
ANSYS,
2012
, “
ANSYS FLUENT User's Guide
,” Release 14.5, ANSYS, Inc., Canonsburg, PA
17.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
18.
Newton
,
P.
,
Copeland
,
C. D.
,
Martinez-Botas
,
R. F.
, and
Seiler
,
M.
,
2012
, “
An Audit of Aerodynamic Loss in a Double Entry Turbine Under Full and Partial Admission
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
70
80
.
19.
Zhang
,
L.
,
Lang
,
J.
,
Jiang
,
K.
, and
Wang
,
S.
,
2014
, “
Simulation of Entropy Generation Under Stall Conditions in a Centrifugal Fan
,”
Entropy
,
16
(
7
), pp.
3573
3589
.
20.
Mersinligil
,
M.
,
Brouckaert
,
J.
,
Courtiade
,
N.
, and
Ottavy
,
X.
,
2013
, “
On Using Fast Response Pressure Sensors in Aerodynamic Probes to Measure Total Temperature and Entropy Generation in Turbomachinery Blade Rows
,”
ASME. J. Eng. Gas Turbines Power
,
135
(
10
), p.
101601
.
21.
Gülich
,
J. F.
,
2010
,
Centrifugal Pumps
,
Springer
,
Berlin
, Chap. 3.
22.
Wu
,
D.
,
Yan
,
P.
,
Chen
,
X.
,
Wu
,
P.
, and
Yang
,
S.
,
2015
, “
Effect of Trailing-Edge Modification of a Mixed-Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
10
), p.
101205
.
23.
Barrio
,
R.
,
Fernandez
,
J.
,
Blanco
,
E.
, and
Parrondo
,
J.
,
2011
, “
Estimation of Radial Load in Centrifugal Pumps Using Computational Fluid Dynamics
,”
Eur. J. Mech. B-Fluids
,
30
(
3
), pp.
316
324
.
You do not currently have access to this content.