Trailing edge slot film cooling is a widely used active cooling scheme for turbine blade trailing edges. Current Reynolds-Averaged Navier–Stokes (RANS) models are known to significantly overpredict the adiabatic effectiveness of these configurations. It is shown that this overprediction is due in part to the breakdown of the Reynolds analogy between turbulent shear stress and scalar transport in the near wall region. By examining previously reported direct numerical simulation (DNS) results for a wall-mounted cube in cross flow, it is seen that in a flow with a significantly perturbed outer boundary layer, the turbulent diffusivity is not as strongly damped as the turbulent viscosity in the viscous sublayer and buffer layer of the boundary layer. By removing the Van Driest damping function from the length scale model for the turbulent diffusivity, more accurate turbulent diffusivity predictions are possible. This near wall correction is applied to trailing edge slot film cooling flows and it is demonstrated that the predictive accuracy of the RANS models is significantly enhanced. Detailed comparisons between RANS results and experimental datasets for 15 different cases demonstrate that this correction gives significant improvement to the accuracy of the RANS predictions across a broad range of trailing edge slot film cooling configurations.

References

1.
Benson
,
M.
,
Elkins
,
C.
,
Yapa
,
S.
,
Ling
,
J.
, and
Eaton
,
J.
,
2012
, “
Effects of Varying Reynolds Number, Blowing Ratio, and Internal Geometry on Trailing Edge Cutback Film Cooling
,”
Exp. Fluids
,
52
(
6
), pp.
1415
1430
.10.1007/s00348-012-1260-1
2.
Holloway
,
D.
,
Leylek
,
J.
, and
Buck
,
F.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part 1—Steady Framework for Experimental and Computational Results
,”
ASME Turbo Expo
,
Amsterdam, The Netherlands
, June 3–6, pp.
835
843
.
3.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Whitney
,
C.
,
2006
, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
128
(
2
), pp.
292
299
.10.1115/1.2137739
4.
Schneider
,
H.
,
Bauer
,
H.
,
von Terzi
,
D.
, and
Rodi
,
W.
,
2012
, “
Coherent Structures in Trailing-Edge Cooling and the Challenge for Turbulent Heat Transfer Modelling
,”
ASME Turbo Expo
,
Copenhagen, Denmark
, June 11–15, pp.
1673
1682
.
5.
Joo
,
J.
, and
Durbin
,
P.
,
2009
, “
Simulation of Turbine Blade Trailing Edge Cooling
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021102
.10.1115/1.3054287
6.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2013
, “
Evaluation of RANS Predictions on a Linear Nozzle Vane Cascade With Trailing Edge Cutback Film Cooling
,”
ASME
Paper No. GT2013-94694.10.1115/GT2013-94694
7.
Ling
,
J.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2014
, “
Optimal Turbulent Schmidt Number for RANS Modeling of Trailing Edge Slot Film Cooling
,”
ASME
Turbo Expo, Dusseldorf, Germany, June 16–20.10.1115/GT2014-25578
8.
Schneider
,
H.
,
von Terzi
,
D.
, and
Bauer
,
H.-J.
,
2010
, “
Large-Eddy Simulations of Trailing-Edge Cutback Film Cooling at Low Blowing Ratio
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
767
775
.10.1016/j.ijheatfluidflow.2010.06.010
9.
Egorov
,
Y.
,
Menter
,
F.
,
Lechner
,
R.
, and
Cokljat
,
D.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 2: Application to Complex Flows
,”
J. Flow, Turbul. Combust.
,
85
(
1
), pp.
139
165
.10.1007/s10494-010-9265-4
10.
Daly
,
B.
, and
Harlow
,
F.
,
1970
, “
Transport Equations in Turbulence
,”
Phys. Fluids
,
13
(11), pp.
2634
2649
.10.1063/1.1692845
11.
Rogers
,
M.
,
Mansour
,
N.
, and
Reynolds
,
W.
,
1989
, “
An Algebraic Model for the Turbulent Flux of a Passive Scalar
,”
J. Fluid Mech.
,
203
, pp.
77
101
.10.1017/S0022112089001382
12.
Abe
,
K.
, and
Suga
,
K.
,
2001
, “
Towards the Development of a Reynolds-Averaged Algebraic Turbulent Scalar-Flux Model
,”
J. Heat Fluid Flow
,
22
(
1
), pp.
19
29
.10.1016/S0142-727X(00)00062-X
13.
Nagano
,
Y.
, and
Kim
,
C.
,
1998
, “
A Two-Equation Model for Heat Transport in Wall Turbulent Shear Flows
,”
ASME J. Heat Transfer
,
110
(
3
), pp.
583
589
.10.1115/1.3250532
14.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
,
1995
, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows II. Thermal Field Calculations
,”
Int. J. Heat Mass Transfer
,
38
(
8
), pp.
1467
1481
.10.1016/0017-9310(94)00252-Q
15.
Yousef
,
M.
,
Nagano
,
Y.
, and
Tagawa
,
M.
,
1992
, “
A Two-Equation Heat Transfer Model for Predicting Turbulent Thermal Fields Under Arbitrary Wall Thermal Conditions
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
3095
3104
.10.1016/0017-9310(92)90329-Q
16.
Kays
,
W.
,
1994
, “
Turbulent Prandtl Number—Where Are We?
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
.10.1115/1.2911398
17.
Antonia
,
R.
,
1980
, “
Behaviour of the Turbulent Prandtl Number Near the Wall
,”
Int. J. Heat Mass Transfer
,
23
(
6
), pp.
906
908
.10.1016/0017-9310(80)90047-2
18.
Lakehal
,
D.
,
2002
, “
Near-Wall Modeling of Turbulent Convective Heat Transport in Film Cooling of Turbine Blades With the Aid of Direction Numerical Simulation Data
,”
ASME J. Turbomach.
,
124
(
3
), pp.
485
498
.10.1115/1.1482408
19.
Lu
,
D.
, and
Hetsroni
,
G.
,
1995
, “
Direct Numerical Simulation of a Turbulent Open Channel Flow With Passive Heat Transfer
,”
Int. J. Heat Mass Transfer
,
38
(
17
), pp.
3241
3251
.10.1016/0017-9310(95)00048-E
20.
Madavan
,
N.
, and
Rai
,
M.
,
1995
, “
Direct Numerical Simulation of Boundary Layer Transition on a Heated Flat Plate With Elevated Freestream Turbulence
,”
33rd Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Jan. 9–12, Paper No. 95-0771.
21.
Sommer
,
T.
,
So
,
R.
, and
Zhang
,
H.
,
1994
, “
Heat Transfer Modeling and the Assumption of Zero Wall Temperature Fluctuations
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
855
863
.10.1115/1.2911459
22.
Holloway
,
D.
,
Leylek
,
J.
, and
Buck
,
F.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part 2—Unsteady Framework for Experimental and Computational Results
,”
ASME Turbo Expo
,
Amsterdam, The Netherlands
, June 3–6, pp.
845
853
.
23.
Barigozzi
,
G.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2012
, “
Experimental Investigation of the Effects of Blowing Conditions and Mach Number on the Unsteady Behavior of Coolant Ejection Through a Trailing Edge Cutback
,”
Int. J. Heat Fluid Flow
,
37
, pp.
37
50
.10.1016/j.ijheatfluidflow.2012.07.001
24.
Rossi
,
R.
,
Philips
,
D.
, and
Iaccarino
,
G.
,
2010
, “
A Numerical Study of Scalar Dispersion Downstream of a Wall-Mounted Cube Using Direct Simulations and Algebraic Flux Models
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
805
819
.10.1016/j.ijheatfluidflow.2010.05.006
25.
Rossi
,
R.
, and
Iaccarino
,
G.
,
2013
, “
Numerical Analysis and Modeling of a Plume Meandering in Passive Scalar Dispersion Downstream of a Wall-Mounted Cube
,”
Int. J. Heat Fluid Flow
,
43
, pp.
137
148
.10.1016/j.ijheatfluidflow.2013.04.006
26.
So
,
R.
, and
Speziale
,
C.
,
1999
, “
A Review of Turbulent Heat Transfer Modeling
,”
Annu. Rev. of Heat Transfer
,
10
(10), pp.
177
220
.10.1615/AnnualRevHeatTransfer.v10.70
27.
Wolfstein
,
M.
,
1969
, “
The Velocity and Temperature Distribution of One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
301
318
.10.1016/0017-9310(69)90012-X
28.
Benson
,
M.
,
Elkins
,
C.
,
Yapa
,
S.
, and
Eaton
,
J.
,
2012
, “
Experimental-Based Redesigns for Trailing Edge Film Cooling of Gas Turbine Blades
,”
ASME
Turbo Expo
,
Copenhagen, Denmark
, June 11–15, pp.
1175
1184
.10.1115/GT2012-68067
29.
Benson
,
M.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2011
, “
3D Velocity and Scalar Field Diagnostics Using Magnetic Resonance Imaging With Applications in Film-Cooling
,” Stanford University, Stanford, CA, Turbulent Flow Report No. 123.
30.
Ling
,
J.
,
Yapa
,
S.
,
Benson
,
M.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2013
, “
3D Velocity and Scalar Field Measurements of an Airfoil Trailing Edge With Slot Film Cooling: The Effect of an Internal Structure in the Slot
,”
ASME J. Turbomach.
,
135
(
3
), p.
031018
.10.1115/1.4007520
31.
Ling
,
J.
,
Elkins
,
C.
,
Benson
,
M.
,
Yapa
,
S.
, and
Eaton
,
J.
,
2013
, “
Measurements of a Trailing Edge Slot Film Cooling Geometry Designed for Reduced Coolant Flowrate and High Surface Effectiveness
,”
ASME
Paper No. GT2013-94292.10.1115/GT2013-94292
32.
Ling
,
J.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2014
, “
The Effect of Land Taper Angle on Trailing Edge Slot Film Cooling
,”
ASME Turbo Expo
, Dusseldorf, Germany, June 16–20.
33.
Ling
,
J.
,
Coletti
,
F.
,
Yapa
,
S.
, and
Eaton
,
J.
,
2013
, “
Experimentally Informed Optimization of Turbulent Diffusivity for a Discrete Hole Film Cooling Geometry
,”
Int. J. Heat Fluid Flow
,
44
, pp.
348
357
.10.1016/j.ijheatfluidflow.2013.07.005
You do not currently have access to this content.