This article presents a numerical investigation of 2D turbulent flow within a double external gear pump. The configuration of the inlet and outlet ports is determined such that the double gear pump acts like the combination of two parallel pumps. The complex geometry of the double gear pump, existence of narrow gaps between rotating and stationary walls, and rapidly deforming flow domain make the numerical solution more complicated. In order to solve the mass, momentum, and energy conservation laws along with the k-ε turbulence model, a second-order finite volume method has been used over a dynamically varying unstructured mesh. The numerical results including pressure contours, velocity vectors, flow patterns inside the suction chamber, leakage paths, and time variation of volumetric flow rate are presented in detail. The flow rate characteristic curves with linear behavior are demonstrated at rotational speeds and outlet pressures in the range of 1500–4000 rpm and 2–80 bar, respectively. The effect of reducing the gear-casing gap-size on the augmentation of the net flow rate has been investigated. It is concluded that the minimum oil pressure within the gear pump occurs at the two places between contacting gears near the inlet ports. The contours of vapor volume fraction are also illustrated.

References

1.
Ghazanfarian
,
J.
, and
Nobari
,
M. R. H.
,
2009
, “
A Numerical Study of Convective Heat Transfer From a Rotating Cylinder With Cross-Flow Oscillation
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5402
5411
.10.1016/j.ijheatmasstransfer.2009.06.036
2.
Ghazanfarian
,
J.
, and
Nobari
,
M. R. H.
,
2009
, “
A Numerical Investigation of Fluid Flow Over a Rotating Cylinder With Cross Flow Oscillation
,”
Comput. Fluids
,
38
(
10
), pp.
2026
2036
.10.1016/j.compfluid.2009.06.008
3.
Ghazanfarian
,
J.
, and
Nobari
,
M. R. H.
,
2010
, “
Convective Heat Transfer From a Rotating Cylinder With Inline Oscillation
,”
Int. J. Therm. Sci.
,
49
(
10
), pp.
2026
2036
.10.1016/j.ijthermalsci.2010.05.006
4.
Ghazanfarian
,
J.
, and
Abbassi
,
A.
,
2011
, “
Numerical Investigation of Flow Over Square Cylinder With Moving Walls and Incident Angel by CBS Method
,”
Proceedings of the 14th International Conference on Finite Element Flow Problems
, Munich, Germany, Mar. 23–25, p.
167
.
5.
Castilla
,
R.
,
Gamez-Montero
,
P. J.
,
Erturk
,
N.
,
Vernet
,
A.
,
Coussirat
,
M.
, and
Codina
,
E.
,
2010
, “
Numerical Simulation of Turbulent Flow in the Suction Chamber of a Gear Pump Using Deforming Mesh and Mesh Replacement
,”
Int. J. Mech. Sci.
,
52
(
10
), pp.
1334
1342
.10.1016/j.ijmecsci.2010.06.009
6.
del Campo
,
D.
,
Castilla
,
R.
,
Raush
,
G.
,
Gamez-Montero
,
P. J.
, and
Codina
,
E.
,
2012
, “
Numerical Analysis of External Gear Pumps Including Cavitation
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081105
.10.1115/1.4007106
7.
Strasser
,
W.
,
2007
, “
CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
476
484
.10.1115/1.2436577
8.
Houzeaux
,
G.
, and
Codina
,
R.
,
2007
, “
A Finite Element Method for the Solution of Rotary Pumps
,”
Comput. Fluids
,
36
(
4
), pp.
667
679
.10.1016/j.compfluid.2006.02.005
9.
Gamez-Montero
,
P. J.
,
Castilla
,
R.
,
del Campo
,
D.
,
Erturk
,
N.
,
Raush
,
G.
, and
Codina
,
E.
,
2012
, “
Influence of the Interteeth Clearances on the Flow Ripple in a Gerotor Pump for Engine Lubrication
,”
Proc. Inst. Mech. Eng., Part D
,
226
(
7
), pp.
930
942
.10.1177/0954407011431545
10.
Kumar
,
M. S.
, and
Manonmani
,
K.
,
2010
, “
Computational Fluid Dynamics Integrated Development of Gerotor Pump Inlet Components for Engine Lubrication
,”
Proc. Inst. Mech. Eng., Part D
,
1594
(
12
), pp.
1555
1567
.10.1243/09544070JAUTO1594
11.
Ghazanfarian
,
J.
, and
Saghatchi
,
R.
,
2014
, “
SPH Simulation of Fluid-Structure Interaction of Flow Past a Water-Leaving Rotating Circular Cylinder
,”
Proceedings of the National Conference on Mechanical Engineering
, (NCMEI2014), Shiraz, Iran, Feb. 27.
12.
Saghatchi
,
R.
,
Ghazanfarian
,
J.
, and
Gorji-Bandpy
,
M.
,
2014
, “
Numerical Simulation of Water-Entry and Sedimentation of an Elliptic Cylinder Using Smoothed-Particle Hydrodynamics Method
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
3
), p.
031801
.10.1115/1.4026844
13.
Gomme
,
P. T.
,
Prakash
,
M.
,
Hunt
,
B.
,
Stokes
,
N.
,
Cleary
,
P.
,
Tatford
,
O. C.
, and
Bertolini
,
J.
,
2006
, “
Effect of Lobe Pumping on Human Albumin: Development of a Lobe Pump Simulator Using Smoothed Particle Hydrodynamics
,”
Biotechnol. Appl. Biochem.
,
43
(
2
), pp.
113
120
10.1042/BA20050188
14.
Thanapandi
,
P.
, and
Prasad
,
R.
,
1995
, “
Centrifugal Pump Transient Characteristics and Analysis Using the Method of Characteristics
,”
Int. J. Mech. Sci.
,
37
(
1
), pp.
77
89
.10.1016/0020-7403(95)93054-A
15.
Voorde
,
J. V.
,
Vierendeels
,
J.
, and
Dick
,
E.
,
2004
, “
Flow Simulations in Rotary Volumetric Pumps and Compressors With The Fictitious Domain Method
,”
J. Comput. Appl. Math.
,
168
(
1–2
), pp.
491
499
.10.1016/j.cam.2003.04.007
16.
Riemslagh
,
K.
,
Vierendeels
,
J.
, and
Dick
,
E.
,
2000
, “
An Arbitrary Lagrangian–Eulerian Finite-Volume Method for the Simulation of Rotary Displacement Pump Flow
,”
Appl. Numer. Math.
,
32
(
4
), pp.
419
433
.10.1016/S0168-9274(99)00061-6
17.
Vacca
,
A.
, and
Guidetti
,
M.
,
2011
, “
Modeling and Experimental Validation of External Spur Gear Machines for Fluid Power Applications
,”
Simul. Modell. Pract. Theory
,
19
(
9
), pp.
2007
2031
.10.1016/j.simpat.2011.05.009
18.
Casoli
,
P.
,
Vacca
,
A.
, and
Berta
,
G. L.
,
2008
, “
Optimization of Relevant Design Parameters of External Gear Pumps
,”
Proceedings of the 7th JFPS International Symposium on Fluid Power
, Toyama, Japan, Sept. 15–18, pp.
277
282
.
19.
Ertürk
,
N.
,
Vernet
,
A.
,
Ferre
,
J. A.
,
Castilla
,
R.
, and
Codina
,
E.
,
2008
, “
Analysis of the Turbulent Flow of an External Gear Pump by Time Resolved Particle Image Velocimetry
,”
Proceedings of the 14th International Symposium on Application Laser Techniques of Fluid Mechanics
, Lisbon, Portugal, July 7–10.
20.
Erturk
,
N.
,
Vernet
,
A.
,
Castilla
,
R.
,
Gamez-Montero
,
P. J.
, and
Ferré
,
J. A.
,
2011
, “
Experimental Analysis of the Flow Dynamics in the Suction Chamber of an External Gear Pump
,”
Int. J. Mech. Sci.
,
53
(
2
), pp.
135
144
.10.1016/j.ijmecsci.2010.12.003
21.
Waldschik
,
A.
, and
Buttgenbach
,
S.
,
2010
, “
Micro Gear Pump With Internal Electromagnetic Drive
,”
Microsyst. Technol.
,
16
(
8–9
), pp.
1581
1587
.10.1007/s00542-010-1028-6
22.
Huang
,
K. J.
, and
Lian
,
W. C.
,
2009
, “
Kinematic Flowrate Characteristics of External Spur Gear Pumps Using an Exact Closed Solution
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1121
2231
.10.1016/j.mechmachtheory.2008.10.002
23.
Manring
,
N. D.
, and
Kasaragadda
,
S. B.
,
2003
, “
The Theoretical Flow Ripple of an External Gear Pump
,”
ASME J. Dyn. Syst. Meas. Contr.
,
125
(
3
), pp.
396
404
.10.1115/1.1592193
24.
Wang
,
S.
,
Sakura
,
H.
, and
Kasarekar
,
A.
,
2011
, “
Numerical Modeling and Analysis of External Gear Pumps by Applying Generalized Control Volumes
,”
Math. Comput. Modell. Dyn. Syst.
,
17
, pp.
501
513
.
25.
Matsunaga
,
Y.
,
Morioka
,
M.
,
Masuda
,
M.
, and
Kurosaki
,
M.
,
2010
, “
Development of Double Gear Fuel Pump for Heat Management Improvement
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
081601.1
10.1115/1.2833492
26.
Castilla
,
R.
,
Wojciechowski
,
J.
,
Gamez-Montero
,
P. J.
,
Vernet
,
A.
, and
Codina
,
E.
,
2008
, “
Analysis of the Turbulence in the Suction Chamber of an External Gear Pump Using Time Resolved Particle Image Velocimetry
,”
J. Flow Meas. Instrum.
,
19
(
6
), pp.
377
384
.10.1016/j.flowmeasinst.2008.06.005
27.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
,
Mathematical Models of Turbulence
,
Academic
,
London, UK
.
28.
OpenFoam User's Guide
,” Version 2.1.1.
2012
, http://www.openfoam.com/
29.
Mooney
,
K.
,
2012
, “
Adaptive Tetrahedral Re-Meshing for Deforming Domain Simulations
,”
7th OpenFOAM Workshop
, Technische Universitat Darmstadt, Germany, June 25–28, p.
23
.
30.
Jasak
,
H.
, and
Tukovic
,
Z.
,
2010
, “
Dynamic Mesh Handling in Openfoam Applied to Fluid-Structure Interaction Simulations
,”
Proceedings of the V European Conference Computational Fluid Dynamics
, Lisbon, Portugal, June 14–17.
31.
Bensow
,
R. E.
, and
Bark
,
G.
,
2010
, “
Simulating Cavitating Flows With LES in openFOAM
,”
Proceedings of the V European Conference Computational Fluid Dynamics
, Lisbon, Portugal, June 14–17.
32.
Ghazanfarian
,
J.
, and
Ghanbari
,
D.
,
2010
, “
2D Numerical Simulation of a Double Gear Pump Using Dynamic Mesh
,”
Proceedings of the International Conference Mechanical Engineering Advanced Technology
, Isfahan, Iran, Oct. 10–12.
33.
Mimmi
,
G.
,
1992
, “
Experimental Investigation of Flow Rate Irregularity in Rotary Gear Pumps
,”
Proceedings of the ASME 6th International Power Transmission Gearing Conference
, DE-Vol. 43-1, Phoenix, AZ, Sept. 13–16, pp.
283
289
.
34.
Mimmi
,
G.
, and
Pennacchi
,
P.
,
1997
, “
Involute Gear Pumps Versus Lobe Pumps: A Comparison
,”
ASME J. Mech. Design
,
119
(
4
), pp.
458
465
.10.1115/1.2826390
You do not currently have access to this content.