The breakup process of a low speed capillary liquid jet is computationally investigated for different Ohnesorge numbers (Z), wave numbers (K), and disturbance amplitudes (ζo). An implicit finite difference scheme has been developed to solve the governing equations of a viscous liquid jet. The results predict the evolution and breakup of the liquid jet, the growth rate of disturbance, the breakup time and location, and the main and satellite drop sizes. It is found that the predicted growth rate of disturbance, the breakup time, and the main and satellite drop sizes depend mainly on the wave numbers and the Ohnesorge numbers. The results are compared with those available, experimental data and analytical analysis. The comparisons indicate that good agreements can be obtained with the less complex one-dimensional model.

References

1.
Eggers
,
J.
, and
Villermaux
,
E.
, 2008, “
Physics of Liquid Jets
,” Rep. Prog. Phys. 71–036601.
2.
Rayleigh
,
L.
, 1879, “
On the Instability of Jets
,”
Proceedings of the London Mathematical Society
,
10
, p.
4
13
.
3.
Tomotika
,
S.
, 1935, “
On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous Liquid
,”
Proceedings of the Royal Society of London Series A
,
150
, pp.
322
337
.
4.
Chandrasekhar
,
S.
, 1961,
Hydrodynamic and Hydromagnetic Stability
,
Oxford University Press
,
Oxford
, Chap. XII.
5.
Yuen
,
M. C.
, 1968, “
Non-Linear Capillary Instability of a Liquid Jet
,”
J. Fluid Mech.
,
33
, pp.
151
163
.
6.
Nayfeha
,
H.
, 1970, “
Nonlinear Stability of a Liquid Jet
,”
Phy. Fluids
13
, pp.
841
847
.
7.
Chaudharky
,
C.
, and
Redekoppl
,
G.
, 1980, “
The Nonlinear Capillary Instability of a Liquid Jet. Part 1. Theory
,”
J. Fluid Mech.
,
96
, pp.
257
214
.
8.
Bogy
,
D. B.
, 1979, “
Droplet Formation in a Circular Liquid Jet
,”
Ann. Rev. Fluid Mech.
,
11
, pp.
207
228
.
9.
MaCarthy
,
M. J.
, and
Molloy
,
N. A.
, 1974, “
Review of Stability of Liquid Jets and the Influence of Nozzle Design
,”
Chem. Eng. J.
,
7
, pp.
1
20
.
10.
Fromm
,
J. L.
, 1980, “
Numerical Calculation of the Fluid Dynamics of Droplet-on-Demand Jets
,”
IBM J. Res. Dev.
,
28
(
3
), pp.
257
274
.
11.
Adams
,
R. L.
, and
Roy
,
J.
, 1986, “
A One-Dimensional Numerical Model of a Droplet-On-Demand Ink Jet
,”
J. App. Mech.
,
35
, pp.
193
197
.
12.
Shokoohi
,
F.
, and
Elrod
,
H. G.
, 1987, “
Numerical Investigation of the Disintegration of Liquid Jets
,”
J. Comp. Phys.
,
71
, pp.
324
342
.
13.
Cheuch
,
A.
,
Przekwas
,
A.
,
Yang
,
H.
, and
Gross
,
K.
, 1990, “
Direct Simulation for the Instability and Breakup of Laminar Liquid Jets
,” AIAA paper No. 90–2066.
14.
Sellens
,
R. W.
, 1992, “
A One-Dimensional Numerical Model of Capillary Instability
,”
Atomization and Sprays
,
2
, pp.
239
251
.
15.
Keunings
,
R.
, 1986, “
An Algorithm for the Simulation of Transient Viscoelastic Flows With Free Surfaces
,”
J. Comp. Phys.
,
62
, pp.
199
220
.
16.
Ashgriz
,
N.
, and
Mashayek
,
F.
, 1995, “
Temporal Analysis of Capillary Jet Breakup
,”
J. Fluid Mech.
,
291
, pp.
163
190
.
17.
Mansour
,
N. N.
, and
Lundgren
,
T. S.
, 1990, “
Satellite Formation in Capillary Jet Breakup
,”
Phy. Fluids A
,
2
, pp.
1141
1144
.
18.
Tjahjadi
,
M.
,
Stone
,
H. A.
, and
Ottino
,
J. M.
, 1992, “
Satellite and Subsatellite Formation in Capillary Breakup
,”
J. Fluid Mech.
,
243
, pp.
297
317
.
19.
Hilbing
,
J. H.
, and
Heister
,
S. D.
, 1996, “
Droplet Size Control in Liquid Jet Breakup
,”
Phy. Fluids
,
8
, pp.
1574
1581
.
20.
Ambravaneswaran
,
B.
,
Wilkes
,
E.
, and
Basaran
,
O.
, 2002, “
Drop Formation From a Capillary Tube: Comparison of One-Dimensional and Two-dimensional Analyses and Occurrence of Satellite Drops
,”
Phy. Fluids
,
14
, pp.
2606
2621
.
21.
Zhang
,
K.
,
Shotorban
,
B.
,
Minkowycz
,
W.
, and
Mashayek
,
F.
, 2010, “
A Comprehensive Approach for Simulation of Capillary Jet Breakup
,”
Int. J. Heat and Mass Transfer
,
53
, p.
3057
3066
.
22.
Premnath
,
K. N.
, and
Abraham
,
J.
, 2005, “
Lattice Boltzmann Model for Axisymmetric Multiphase Flows
,”
Phys Review E
,
71
, p.
056706
.
23.
Reitz
,
R. D.
, 1978, “
Atomization and Other Breakup Regimes of a Liquid Jet
,” Ph.D. thesis, Princeton University, Princeton, NJ.
24.
Levich
V. G.
, 1962,
Physicochemical Hydrodynamics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
25.
Ahmed
,
M.
,
Amighi
,
A.
,
Ashgriz
,
N.
, and
Tran
,
H.
, 2008, “
Characteristics of Liquid Sheets Formed By Splash Plate Nozzles
,”
Exp. Fluids
,
44
, pp.
125
136
.
26.
Ahmed
,
M.
,
Ashgriz
,
N.
, and
Tran
,
H.
, 2009, “
Breakup Length of Liquid Sheets Formed by Splash Plate Nozzles
,”
ASME J. Fluid Eng.
,
131
, p.
11306
.
27.
Ahmed
,
M.
,
Ashgriz
,
N.
, and
Tran
,
H.
, 2009, “
Influence of Breakup Regime on the Droplet Sizes Produced By Splash-Plate Nozzles
,”
AIAA Journal
,
47
(
3
), pp.
120
128
.
28.
Anderson
,
D. A.
,
Tannehill
,
J. C.
, and
Pletcher
,
R. H.
, and 1997,
Computational Fluid Mechanics and Heat Transfer
,
Taylor &.& Francis
,
PA
, Chaps. 3, 4, and 8.
29.
Papageorgiou
,
D. T.
, 1995, “
On the Breakup of Viscous Liquid Threads
,”
Phy. Fluids
,
7
(
7
), pp.
1529
1544
.
30.
Donnelly
,
R. J.
, and
Glaberson
,
W.
, 1966, “
Experiments on the Capillary Instability of a Liquid Jet
,”
Proceedings of the Royal Society of London Series A
,
290
(1423), pp.
547
556
.
31.
Goedde
,
E. F.
, and
Yuen
,
M. C.
, 1970, “
Experiments on Liquid Jet Instability
,”
J. Fluid Mech.
,
40
(
3
), pp.
495
511
.
32.
Lafrance
,
P.
, 1975, “
Nonlinear Breakup of a Laminar Liquid Jet
,”
Phy. Fluids
,
18
, pp.
428
432
.
33.
Rutland
,
E.
, and
Jameson
,
J.
, 1970, “
Theoretical Prediction of the Sizes of Droplets Formed in the Breakup of Capillary Jets
,”
Chem. Eng. Sci.
,
25
, pp.
1689
1698
.
34.
Cheong
,
B. S.
, and
Howes
,
T.
, 2004, “
Capillary Jet Instability Under the Influence of Gravity
,”
Chem. Eng. Sci.
,
59
, pp.
2145
2157
.
35.
Bousfied
,
D. W.
, and
Stockel
,
I. H.
, 1990, “
The Breakup of Viscous Jets With Large Velocity Modulations
,”
J. Fluid Mech.
,
218
, pp.
601
617
.
You do not currently have access to this content.