Using a code developed to compute high Reynolds number viscoelastic flows, polymer injection from the upstream stagnation point of a circular cylinder is modeled at . Polymer stresses are represented using the FENE-P constitutive equations. By increasing polymer injection rates within realistic ranges, significant near wake stabilization is observed. Rather than a turbulent detached shear layer giving way to a chaotic primary vortex (as seen in Newtonian flows at high ), a much more coherent primary vortex is shed, which possesses an increased core pressure as well as a reduced level of turbulent energy.
Issue Section:
Technical Briefs
References
1.
Sureshkumar
, R.
, Beris
, A. N.
, and Handler
, R. A.
, 1997, “Direct Numerical Simulation of the Turbulent Channel Flow of a Polymer Solution
,” Phys. Fluids
, 9
(3
), pp. 743
–755
. 2.
White
, C.
, and Mungal
, G.
, 2008, “Mechanics and Prediction of Turbulent Drag Reduction With Polymer Additives
,” Annu. Rev. Fluid Mech.
, 40
, pp. 235
–256
. 3.
Winkel
, E. S.
, Oweis
, G. F.
, Vanapalli
, S. A.
, Dowling
, D. R.
, Perlin
, M.
, Soloman
, M. J.
, and Ceccio
, S. L.
, 2009, “High-Reynolds-Number Turbulent Boundary Layer Friction Drag Deduction From Wall-Injected Polymer Solutions
,” J. Fluid Mech.
, 621
, pp. 259
–288
. 4.
Richter
, D.
, Iaccarino
, G.
, and Shaqfeh
, E. S. G.
, 2010, “Simulations of Three-Dimensional Viscoelastic Flows Past a Circular Cylinder at Moderate Reynolds Numbers
,” J. Fluid Mech.
, 651
, pp. 415
–442
. 5.
Richter
, D.
, Shaqfeh
, E. S. G.
, and Iaccarino
, G.
, 2011, “Floquet Stability Analysis of Viscoelastic Flow Over a Cylinder
,” J. Non-Newtonian Fluid Mech.
, 166
, pp. 554
–565
. 6.
Richter
, D.
, Iaccarino
, G.
, and Shaqfeh
, E. S. G.
, 2011, “Effects of Viscoelasticity in the High Reynolds Number Cylinder Wake
,” J. Fluid Mech., submitted.7.
Dimitropoulos
, C. D.
, Dubief
, Y.
, Shaqfeh
, E. S. G.
, and Moin
, P.
, 2006, “Direct Numerical Simulation of Polymer-Induced Drag Reduction in Turbulent Boundary Layer Flow of Inhomogeneous Polymer Solutions
,” J. Fluid Mech.
, 566
, pp. 153
–162
. 8.
Beris
, A. N.
, and Edwards
, B. J.
, 1994, Thermodynamics of Flowing Systems With Internal Microstructure
, Oxford University Press
, New York
.9.
Dubief
, Y.
, Terrapon
, V. E.
, White
, C. M.
, Shaqfeh
, E. S. G.
, Moin
, P.
, and Lele
, S. K.
, 2005, “New Answers on the Interaction Between Polymers and Vortices in Turbulent Flows
,” Flow, Turbul. Combust.
, 74
(4
), pp. 311
–329
. 10.
Cadot
, O.
, and Lebey
, M.
, 1998, “Shear Instability Inhibition in a Cylinder Wake by Local Injection of a Viscoelastic Fluid
,” Phys. Fluids
, 11
(2
), pp. 494
–496
. 11.
Cadot
, O.
, and Kumar
, S.
, 2000, “Experimental Characterization of Viscoelastic Effects on Two- and Three-Dimensional Shear Instabilities
,” J. Fluid Mech.
, 416
, pp. 151
–172
. 12.
Bloor
, M. S.
, 1964, “The Transition to Turbulence in the Wake of a Circular Cylinder
,” J. Fluid Mech.
, 19
, pp. 290
–304
. 13.
Prasad
, A.
, and Williamson
, C. H. K.
, 1997, “The Instability of the Shear Layer Separating From a Bluff Body
,” J. Fluid Mech.
, 333
, pp. 375
–402
. 14.
Chahine
, G. L.
, Frederick
, G. F.
, and Bateman
, R. D.
, 1993, “Propeller Tip Vortex Cavitation Suppression Using Selective Polymer Injection
,” J. Fluids Eng.
, 115
, pp. 497
–503
. 15.
Fruman
, D. H.
, Pichon
, T.
, and Cerrutti
, P.
, 1995, “Effect of a Drag-Reducing Polymer Solution Ejection on Tip Vortex Cavitation
,” J. Mar. Sci. Technol.
, 1
, pp. 13
–23
. 16.
Yakushiji
, R.
, Chang
, N. A.
, and Ceccio
, S. L.
, 2008, “Tip Vortex Cavitation Suppression by Water and Polymer Injection
,” 27th Symposium on Naval Hydrodynamics
, Seoul, Korea, October 5–10, 2008.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.