This paper describes the implementation of a 3D parallel and Cartesian level set (LS) method coupled with a volume of fluid (VOF) method into the commercial CFD code FLUENT for modeling the gas-liquid interface in bubbly flow. Both level set and volume of fluid methods belong to the so called “one” fluid methods, where a single set of conservation equations is solved and the interface is captured via a scalar function. Since both LS and VOF have advantages and disadvantages, our aim is to couple these two methods to obtain a method, which is superior to both standalone LS and VOF and verify it versus a selection of test cases. VOF is already available in FLUENT, so we implemented an LS method into FLUENT via user defined functions. The level set function is used to compute the surface tension contribution to the momentum equations, via curvature and its normal to the interface, using the Brackbill method while the volume of fluid function is used to capture the interface itself. A re-initialization equation is implemented and solved at every time step using a fifth-order weighted essentially nonoscillatory scheme for the spatial derivative, and a first-order Euler method for time integration. The coupling effect is introduced by solving at the end of each time step an equation, which connects the volume fractions with the level set function. The verification of parasitic currents and interfacial deformation due to numerical error is assessed in comparison to original VOF scheme. Validation is presented for free rising bubbles of different diameters for Morton numbers ranging from 102 to 1011.

1.
Harlow
,
F.
, and
Welch
,
J.
, 1965, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
0031-9171,
8
, pp.
2182
2189
.
2.
Donea
,
J.
, 1983, “
Arbitrary Lagrangian–Eulerian Finite Element Methods
,”
Computational Methods for Transient Analysis
, Vol.
1
, pp.
473
516
.
3.
Hirt
,
C.
,
Amsden
,
A.
, and
Cook
,
J.
, 1997, “
An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
0021-9991,
135
, pp.
203
216
.
4.
Hughes
,
T.
,
Liu
,
W.
, and
Zimmermann
,
T.
, 1981, “
Lagrangian Eulerian Finite Element Formulation for Incompressible Viscous Flow
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
29
, pp.
329
349
.
5.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y. -J.
, 2001, “
A Front Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
0021-9991,
169
, pp.
708
759
.
6.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
, 1992, “
A Front Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
0021-9991,
100
, pp.
25
37
.
7.
Hirt
,
C.
, and
Nichols
,
B.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
8.
Youngs
,
D.
, 1982, “
Time Dependent Multimaterial Flow With Large Fluid Distortion
,”
Numerical Methods for Fluid Dynamics
,
K.
Morton
and
M.
Baines
, eds.,
Academic
,
New York
, pp.
273
285
.
9.
Li
,
J.
, 1995, “
Piecewise Linear Interface Calculation
,”
C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron.
1251-8069,
320
, pp.
391
396
.
10.
Scardovelli
,
R.
, and
Zaleski
,
S.
, 1999, “
Direct Numerical Simulation of Free Surface and Interfacial Flow
,”
Annu. Rev. Fluid Mech.
0066-4189,
31
, pp.
567
603
.
11.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
, 1994, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
0021-9991,
114
, pp.
146
159
.
12.
Sussman
,
M.
,
Fatemi
,
E.
,
Smereka
,
P.
, and
Osher
,
S.
, 1998, “
An Improved Level Set Method for Incompressible Two-Phase Flows
,”
Comput. Fluids
0045-7930,
27
(
5–6
), pp.
663
680
.
13.
Sussman
,
M.
,
Almgren
,
A. S.
,
Bell
,
J. B.
,
Colella
,
P.
,
Howell
,
L. H.
, and
Welcome
,
M. L.
, 1999, “
An Adaptive Level Set Approach for Incompressible Two Phase Flows
,”
J. Comput. Phys.
0021-9991,
148
, pp.
81
124
.
14.
Sussman
,
M.
, and
Fatemi
,
E.
, 1999, “
An Efficient Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
20
(
4
), pp.
1165
1191
.
15.
Shepel
,
S. V.
,
Smith
,
B. L.
, and
Paolucci
,
S.
, 2005, “
Implementation of a Level Set Interface Tracking Method in the FIDAP and CFX-4 Codes
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
674
686
.
16.
Sussman
,
M.
, and
Puckett
,
E. G.
, 2000, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
0021-9991,
162
, pp.
301
337
.
17.
Son
,
G.
, and
Hur
,
N.
, 2002, “
A Coupled Level Set and Volume-of-Fluid Method for Buoyancy-Driven Motion of Fluid Particles
,”
Numer. Heat Transfer, Part B
1040-7790,
42
, pp.
523
542
.
18.
Son
,
G.
, 2003, “
Efficient Implementation of a Coupled Level-Set and Volume of Fluid Method for Three Dimensional Incompressible Two-Phase Flow
,”
Numer. Heat Transfer, Part B
1040-7790,
43
, pp.
549
565
.
19.
Yang
,
X.
,
James
,
A. J.
,
Lowengrub
,
J.
,
Zheng
,
X.
, and
Cristini
,
V.
, 2006, “
An Adaptive Coupled Level-Set/Volume-of-Fluid Interface Capturing Method for Unstructured Triangular Grids
,”
J. Comput. Phys.
0021-9991,
217
, pp.
364
394
.
20.
Sussman
,
M.
,
Smith
,
K.
,
Hussaini
,
M.
,
Ohta
,
M.
, and
Zhi-Wei
,
R.
, 2007, “
A Sharp Interface Method for Incompressible Two-Phase Flows
,”
J. Comput. Phys.
0021-9991,
221
, pp.
469
505
.
21.
Shepel
,
S. V.
, and
Smith
,
B. L.
, 2006, “
New Finite-Element/Finite-Volume Level Set Formulation for Modelling Two-Phase Incompressible Flows
,”
J. Comput. Phys.
0021-9991,
218
, pp.
479
494
.
22.
Sussman
,
M.
, 2003, “
A Second Order Coupled Level Set and Volume-of-Fluid Method for Computing Growth and Collapse of Vapor Bubbles
,”
J. Comput. Phys.
0021-9991,
187
, pp.
110
136
.
23.
Tong
,
A. Y.
, and
Wang
,
Z.
, 2007, “
A Numerical Method for Capillarity-Dominant Free Surface Flows
,”
J. Comput. Phys.
0021-9991,
221
, pp.
506
523
.
24.
Brackbill
,
J.
,
Kothe
,
D.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
25.
Jiang
,
G. -S.
, and
Peng
,
D.
, 2000, “
Weighted ENO Schemes for Hamilton–Jacobi Equations
,”
J. Sci. Comput.
0885-7474,
21
(
6
), pp.
2126
2143
.
26.
Godunov
,
S.
, 1959, “
Finite Difference Methods for Numerical Computation of Discontinuous Solutions of the Equations of Fluid Dynamics
,”
Mat. Sb.
0368-8666,
47
, pp.
271
306
.
27.
Leonard
,
B.
, and
Mokhtari
,
S.
, 1990, “
ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow
,” Technical Memorandum 102568 ICOMP-90-12, NASA.
28.
van Leer
,
B.
, 1979, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method
,”
J. Comput. Phys.
0021-9991,
32
, pp.
101
136
.
29.
FLUENT, version 6.3.26 User Defined Functions Manual.
30.
Mencinger
,
J.
, and
Zun
,
I.
, 2007, “
On the Finite Volume Discretization of Discontinuous Body Force Field on Collocated Grid: Application to VOF Method
,”
J. Comput. Phys.
0021-9991,
221
, pp.
524
538
.
31.
Tornberg
,
A. -K.
, and
Engquist
,
B.
, 2000, “
A Finite Element Based Level-Set Method for Multiphase Flow Applications
,”
Comput. Visualization Sci.
1432-9360,
3
, pp.
93
101
.
32.
Meier
,
M.
,
Yadigaroglu
,
G.
, and
Smith
,
B. L.
, 2002, “
A Novel Technique for Including Surface Tension in PLIC-VOF Methods
,”
Eur. J. Mech. B/Fluids
0997-7546,
21
, pp.
61
73
.
33.
Smolianski
,
A.
, 2005, “
Finite-Element/Level-Set/Operator Splitting (FELSOS) Approach for Computing Two-Fluid Unsteady Flows With Free Moving Interfaces
,”
Int. J. Numer. Methods Fluids
0271-2091,
48
, pp.
231
269
.
34.
Rider
,
W. J.
, and
Kothe
,
D. B.
, 1998, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
0021-9991,
141
, pp.
112
152
.
35.
Sussman
,
M.
, and
Smereka
,
P.
, 1997, “
Axisymmetric free Boundary Problems
,”
J. Fluid Mech.
0022-1120,
341
, pp.
269
294
.
36.
Bhaga
,
D.
, and
Weber
,
M.
, 1981, “
Bubbles in Viscous Liquids: Shapes, Wakes and Velocities
,”
J. Fluid Mech.
0022-1120,
105
, pp.
61
85
.
37.
Zun
,
I.
, and
Groselj
,
J.
, 1996, “
The Structure of Bubble Non-Equilibrum Movement in Free-Rise and Agitated-Rise Conditions
,”
Nucl. Eng. Des.
0029-5493,
163
, pp.
99
115
.
38.
Grace
,
J.
, 1973, “
Shapes and Velocities of Bubbles Rising in Infinite Liquids
,”
Trans. Inst. Chem. Eng.
0371-7496,
51
, pp.
116
120
.
39.
Hnat
,
J.
, and
Buckmaster
,
J.
, 1976, “
Spherical Cap Bubbles and Skirt Formation
,”
Phys. Fluids
0031-9171,
19
, pp.
182
194
.
40.
Peebles
,
F.
, and
Garber
,
H.
, 1953, “
Studies of the Motion of Gas Bubbles in Liquids
,”
Chem. Eng. Prog.
0360-7275,
49
, pp.
88
97
.
41.
Wallis
,
G. B.
, 1974, “
The Terminal Speed of Single Drops or Bubbles in an Infinite Medium
,”
Int. J. Multiphase Flow
0301-9322,
1
, pp.
491
511
.
42.
Tomiyama
,
A.
,
Nakahara
,
Y.
, and
Morita
,
G.
, 2001, “
Rising Velocities and Shapes of Single Bubbles in Vertical Pipes
,”
International Conference of Multiphase Flow
, pp.
1
12
.
You do not currently have access to this content.