Ensuring an adequate life of high pressure turbines requires efficient cooling methods such as rim seal flow ejection from the stator-rotor wheel space cavity interface, which prevents hot gas ingress into the rotor disk. The present paper addresses the potential to improve the efficiency in transonic turbines at certain rim seal ejection rates. To understand this process, a numerical study was carried out, combining computational fluid dynamic (CFD) simulations and experiments on a single stage axial test turbine. The three dimensional steady CFD analysis was performed, modeling the purge cavity flow ejected downstream of the stator blade row at three flow regimes: subsonic M2=0.73, transonic M2=1.12, and supersonic M2=1.33. Experimental static pressure measurements were used to calibrate the computational model. The main flow field-purge flow interaction is found to be governed by the vane shock structures at the stator hub. The interaction between the vane shocks at the hub and the purge flow has been studied and quantitatively characterized as a function of the purge ejection rate. The ejection of 1% of the core flow from the rim seal cavity leads to an increase in the hub static pressure of approximately 7% at the vane trailing edge. This local reduction of the stator exit Mach number decreases the trailing edge losses in the transonic regime. Finally, a numerically predicted loss breakdown is presented, focusing on the relative importance of the trailing edge losses, boundary layer losses, shock losses, and mixing losses, as a function of the purge rate ejected. Contrary to the experience in subsonic turbines, results in a transonic model demonstrate that ejecting purge flow improves the vane efficiency due to the shock structure modification downstream of the stator.

1.
Anker
,
J. E.
, and
Mayer
,
J. F.
, 2002, “
Simulation of the Interaction of Labyrinth Seal Leakage Flow and Main Flow in an Axial Turbine
,” ASME Paper No. GT2002-30348.
2.
Hunter
,
S. D.
, and
Manwaring
,
S. R.
, 2000, “
Endwall Cavity Flow Effects on Gas Path Aerodynamics in an Axial Flow Turbine
,” ASME Paper No. 2000GT-651.
3.
Paniagua
,
G.
,
Denos
,
R.
, and
Almeida
,
S.
, 2004, “
Effect of the Hub Endwall Cavity Flow on the Flow Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
578
586
.
4.
Pau
,
M.
,
Paniagua
,
G.
,
Delhaye
,
D.
,
de la Loma
,
A.
, and
Ginibre
,
P.
, 2010, “
Aerothermal Impact of Stator-Rim Purge Flow and Rotor-Platform Film Cooling on a Transonic Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
132
(
2
), p.
021006
.
5.
Roy
,
R. P.
,
Xu
,
G.
,
Feng
,
J.
, and
Kang
,
S.
, 2001, “
Pressure Field and Main-Stream Gas Ingestion in a Rotor-Stator Disk Cavity
,” ASME Paper No. 2001-GT-0564.
6.
Roy
,
R. P.
,
Zhou
,
D. W.
,
Ganesan
,
S.
,
Johnson
,
B. V.
,
Wang
,
C. –Z.
, and
Paolillo
,
R. E.
, 2007, “
The Flow Field and Main Gas Ingestion in a Rotor-Stator Cavity
,” ASME Paper No. 2007-GT-27671.
7.
Marini
,
R.
, and
Girgis
,
S.
, 2007, “
The Effect of Blade Leading Edge Platform Shape on Upstream Disk Cavity to Mainstream Flow Interaction of a High-Pressure Turbine Stage
,” ASME Paper No. 2007-27429.
8.
Montomoli
,
F.
,
Massini
,
M.
,
Maceli
,
N.
,
Cirri
,
M.
,
Lombardi
,
L.
,
Ciani
,
A.
,
D’Ercole
,
M.
, and
de Prosperis
,
R.
, 2006, “
Interaction of Wheelspace Coolant and Main Flow in a New Aeroderivative LPT
,” ASME Paper No. 2006-GT-90877.
9.
McLean
,
C.
,
Camci
,
G.
, and
Glezer
,
B.
, 2001, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High Pressure Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
687
703
.
10.
Ong
,
H. P.
,
Miller
,
R. J.
, and
Uchida
,
S.
, 2006, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,” ASME Paper No. 2006-GT-91060.
11.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachinery
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
621
656
.
12.
Sieverding
,
C. H.
,
Stanislas
,
M.
, and
Snoek
,
J.
, 1983, “
The Base Pressure Problem in Transonic Cascade
,” ASME Paper No. 83-GT-50.
13.
Mee
,
D. J.
,
Baines
,
N. C.
,
Oldfield
,
M. L. G.
, and
Dickens
,
T. E.
, 1992, “
An Examination of the Contribution to Loss on a Transonic Turbine Blade in Cascade
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
155
162
.
14.
Xu
,
L.
, and
Denton
,
J. D.
, 1988, “
The Base Pressure and Loss of a Family of Four Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
110
, pp.
9
17
.
15.
Izsak
,
M. S.
, and
Chiang
,
H. -W. D.
, 1993, “
Turbine and Compressor Wake Modeling for Blade Forced Response
,” ASME Paper No. 93-GT-238.
16.
Michelassi
,
V.
,
Rodi
,
W.
, and
Giess
,
P. -A.
, 1997, “
Experimental and Numerical Investigation of Boundary Layer and Wake Development in a Transonic Turbine Cascade
,” ASME Paper No. 97-GT-483.
17.
Joe
,
C. R.
,
Montesdeoca
,
X. A.
,
Scoechting
,
F. O.
,
MacArthur
,
C. D.
, and
Meininger
,
M.
, 1998, “
High Pressure Turbine Vane Annular Cascade Heat Flux and Aerodynamic Measurements With Comparison to Predictions
,” ASME Paper No. 98-GT-430.
18.
Mee
,
D. J.
, 1992, “
Techniques for Aerodynamic Loss Measurement of Transonic Turbine Cascades With Trailing Edge Region Coolant Ejection
,” ASME Paper No. 92-GT-157.
19.
Michelassi
,
V.
,
Martelli
,
F.
, and
Amecke
,
J.
, 1994, “
Aerodynamic Performance of a Transonic Turbine Guide Vane With Trailing Edge Coolant Ejection
,” ASME Paper No. 94-GT-248.
20.
Bohn
,
D.
,
Becker
,
V. J.
,
Behenke
,
K. D.
, and
Bonhoff
,
B. F.
, 1997, “
Experimental and Numerical Investigations of the Aerodynamical Effects of Coolant Injection Through the Trailing Edge of a Guide Vane
,” ASME Paper No. 97-GT-23.
21.
Kapteijn
,
C.
,
Amecke
,
J.
, and
Michelassi
,
V.
, 1996, “
Aerodynamic Performance of a Transonic Turbine Guide Vane With Trailing Edge Coolant Ejection
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
519
528
.
22.
Vlasic
,
E. P.
,
Girgis
,
S.
, and
Moustapha
,
S. H.
, 1996, “
The Design and Performance of a High Work Research Turbines
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
792
799
.
23.
Sieverding
,
C. H.
,
Arts
,
T.
,
Dénos
,
R.
, and
Martelli
,
F.
, 1996, “
Investigation of the Flow Field Downstream of a Turbine Trailing Edge Cooled Nozzle Guide Vane
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
291
300
.
24.
Tanuma
,
T.
,
Shibukawa
,
N.
, and
Yamamoto
,
S.
, 1997, “
Navier–Stokes Analysis of Unsteady Transonic Flows Through Turbine Cascades With and Without Coolant Ejection
,” ASME Paper No. 97-GT-479.
25.
Jackson
,
D. J.
,
Lee
,
K. L.
,
Ligrani
,
P. M.
, and
Johnson
,
P. D.
, 2000, “
Transonic Aerodynamic Losses Due to Turbine Airfoil, Suction Surface Film Cooling
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
317
325
.
26.
Kacker
,
S. C.
, and
Okapuu
,
U.
, 1982, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Power
0022-0825,
104
, pp.
111
119
.
27.
Kurzke
,
J.
, 1998, “
GASTURB: A Program to Calculate Design and Off-Design Performance of Gas Turbines
,” GASTURB Manual.
28.
Sieverding
,
C. H.
, and
Arts
,
T.
, 1992, “
The VKI Compression Tube Annular Cascade Facility CT3
,” ASME Paper No. 92-GT-336.
29.
Pau
,
M.
,
De la Loma
,
A.
,
Paniagua
,
G.
, and
Delhaye
,
D.
, 2008, “
Film Cooling and Hub Disk Leakage Flow Experiments in a Fully Rotating HP Turbine Stage
,”
WSEAS Transactions on Fluid Mechanics
,
3
, pp.
56
67
.
30.
Guide for the Verification and Validation of Computational Fluid Dynamic Simulations
,” AIAA Paper No. G-077-1998.
31.
Van den Braembussche
,
R.
, 1978, “
Calcul des couches limites compressibles par methode integrale
,” von Karman Institute, Report No. CR 1978-3.
32.
Pierret
,
S.
, 1999, “
Designing Turbomachinery Blades by Means of the Function Approximation Concept Based on Artificial Neural Network, Genetic Algorithm, and the Navier–Stokes Equations
,” Ph.D. thesis, von Karman Institute, Rhode Saint Genèse, Belgium.
33.
Abu-Ghannam
,
B. J.
, and
Show
,
R.
, 1980, “
Natural Transition of Boundary Layers—The Effect of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
0022-2542,
22
, pp.
213
228
.
34.
Prasad
,
A.
, 2005, “
Calculation of the Mixed-Out State in Turbomachine Flows
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
564
572
.
35.
Shapiro
,
A. H.
, 1953,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
Ronald
,
New York
.
You do not currently have access to this content.