Abstract
This paper presents experimental and analytical results concerning the pressure drop and the core size in vortex chambers. The new formulation is based on the conservation of mass and energy integral equations and takes into account the presence of two outlet ports. The diminishing vortex strength is introduced through the vortex decay factor. The influence of vortex chamber geometry, such as diameter ratio, aspect ratio, and Reynolds number, on the flow field have been examined and compared with the present experimental data. It is shown that the presence of the swirl velocity component makes the pressure drop across a vortex chamber significantly different than the familiar unidirectional pipe flow. When the chamber length is increased, the vortex diminishes under the action of friction, producing a weaker centrifugal force which leads to a further pressure drop. It is revealed that by increasing the Reynolds number, the cores expand resulting into a larger pressure coefficient. For a double-outlet chamber where the flow is divided into two streams, the last parameter is found to be less than that of a single-outlet.