The effects of non-uniform zeta potentials on electro-osmotic flows in flat microchannels have been investigated with particular attention to reservoir effects. The governing equations, which consist of a Laplace equation for the distribution of external electric potential, a Poisson equation for the distribution of electric double layer potential, the Nernst-Planck equation for the distribution of charge density, and modified Navier-Stokes equations for the flow field are solved numerically for an incompressible steady flow of a Newtonian fluid using the finite-volume method. For the validation of the numerical scheme, the key features of an ideal electro-osmotic flow with uniform zeta potential have been compared with analytical solutions for the ionic concentration, electric potential, pressure, and velocity fields. When reservoirs are included in the analysis, an adverse pressure gradient is induced in the channel due to entrance and exit effects even when the reservoirs are at the same pressure. Non-uniform zeta potentials lead to complex flow fields, which are examined in detail.

1.
Hunter
,
R. J.
, 1981,
Zeta Potential in Colloid Science: Principles and Applications
,
Academic
, London, pp.
4
7
.
2.
Rice
,
C. L.
, and
Whitehead
,
R.
, 1965, “
Electrokinetic Flow in a Narrow Cylindrical Capillary
,”
J. Phys. Chem.
0022-3654,
69
, pp.
4017
4023
.
3.
Andreev
,
V. P.
,
Dubrovsky
,
S. G.
, and
Stepanov
,
Y. V.
, 1997, “
Mathematical Modeling of Capillary Electrophoresis in Rectangular Channels
,”
J. Microcolumn Sep.
1040-7685,
9
, pp.
443
450
.
4.
Patankar
,
N. A.
, and
Hu
,
H. H.
, 1998, “
Numerical Simulation of Electroosmotic Flow
,”
Anal. Chem.
0003-2700,
70
, pp.
1870
1881
.
5.
Santiago
,
J. G.
, 2001, “
Electroosmotic Flows in Micro-Channels With Finite Inertial and Pressure Forces
,”
Anal. Chem.
0003-2700,
73
, pp.
2353
2365
.
6.
Yang
,
R. J.
,
Fu
,
L. M.
, and
Lin
,
Y. C.
, 2001, “
Electroosmotic Flow in Microchannels
,”
J. Colloid Interface Sci.
0021-9797,
239
, pp.
98
105
.
7.
Yang
,
R. J.
,
Fu
,
L. M.
, and
Hwang
,
C. C.
, 2001, “
Electroosmotic Entry Flow in a Microchannel
,”
J. Colloid Interface Sci.
0021-9797,
244
, pp.
173
179
.
8.
Yang
,
R. J.
,
Tseng
,
T. I.
, and
Chang
,
C. C.
, 2005, “
End Effects on Electroosmotic Flows in Microchannels
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
254
262
.
9.
Ren
,
L.
, and
Li
,
D.
, 2002, “
Theoretical Studies of Microfluidic Dispensing Processes
,”
J. Colloid Interface Sci.
0021-9797,
254
, pp.
384
395
.
10.
Lin
,
J. Y.
,
Fu
,
L. M.
, and
Yang
,
R. J.
, 2002, “
Numerical Simulation of Electrokinetic Focusing in Microfluidic Chips
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
955
961
.
11.
Zhang
,
Y.
,
Gu
,
X. J.
,
Barber
,
R. W.
, and
Emerson
,
D. R.
, 2004, “
An Analysis of Induced Pressure Fields in Electrooosmotic Flows Through Microchannels
,”
J. Colloid Interface Sci.
0021-9797,
275
, pp.
670
678
.
12.
Kang
,
Y.
,
Yang
,
C.
, and
Huang
,
X.
, 2002, “
Dynamic Aspects of Electro-Osmotic Flow in a Cylindrical Microcapillary
,”
Int. J. Eng. Sci.
0020-7225,
40
, pp.
2203
2221
.
13.
Anderson
,
J. L.
, and
Idol
,
W. K.
, 1985, “
Electroosmosis Through Pores With Non-Uniformly Charged Walls
,”
Chem. Eng. Commun.
0098-6445,
38
, pp.
93
106
.
14.
Herr
,
A. E.
,
Molho
,
J. G.
,
Mungal
,
M. G.
, and
Kenny
,
T. W.
, 2000, “
Electroosmotic Capillary Flow With Non-Uniform Zeta Potential
,”
Anal. Chem.
0003-2700,
72
, pp.
1053
1057
.
15.
Ren
,
L.
, and
Li
,
D.
, 2001, “
Electroosmotic Flow in Heterogeneous Micro-Channels
,”
J. Colloid Interface Sci.
0021-9797,
243
, pp.
255
261
.
16.
Fu
,
L. M.
,
Lin
,
J. Y.
, and
Yang
,
R. J.
, 2003, “
Analysis of Electroosmotic Flow With Step Change in Zeta Potential
,”
J. Colloid Interface Sci.
0021-9797,
258
, pp.
266
275
.
17.
Yang
,
J.
,
Masliyah
,
J. H.
, and
Kwok
,
D. Y.
, 2004, “
Streaming Potential and Electroosmotic Flow in Heterogeneous Circular Microchannels With Non-Uniform Zeta Potential: Requirements of Flow Rate and Current Continuities
,”
Langmuir
0743-7463,
20
, pp.
3863
3871
.
18.
Masliyah
,
J. H.
, 1994,
Electrokinetic Transport Phenomena
,
Alberta Oil Sands Technology and Research Authority
, Edmonton, pp.
71
97
.
19.
Weast
,
R.
,
Astle
,
M. J.
, and
Beyer
,
W. H.
, 1983,
CRC Handbook of Chemistry and Physics
,
CRC
, Boca Raton, FL, pp.
E
-
49
, F-11, F-38, F-46.
20.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
21.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
0001-1452,
21
, pp.
1525
1532
.
22.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
, New York, pp.
52
54
.
23.
Keys
,
W. M.
, and
London
,
A. L.
, 1984,
Compact Heat Exchangers
,
McGraw-Hill
, New York, pp.
108
110
.
You do not currently have access to this content.