Pressure-driven flows over a square cavity are studied numerically for Bingham plastics exhibiting a yield stress. The problem is encountered whenever pressure measurements are made by a drilled-hole based pressure transducer. The Bingham constitutive equation is used with an appropriate modification proposed by Papanastasiou, which applies everywhere in the flow field in both yielded and practically unyielded regions. Newtonian results are obtained for a wide range of Reynolds numbers (0<Re1000) for the cavity vortex position and intensity, and the excess pressure drop (entrance correction) in the system. To reduce the length of the computational domain for highly convective flows, an open boundary condition has been implemented at the outflow. For viscoplastic fluids the emphasis is on determining the extent and shape of yielded/unyielded regions along with the cavity vortex shape, size, and intensity for a wide range of Bingham numbers (0Bn<). The entrance correction is found to be an increasing sigmoidal function of the Bn number, reaching asymptotically the value of zero. It is shown that for viscoplastic fluids not exhibiting normal stresses in shear flow (lack of viscoelasticity), the hole pressure is zero opposite the center of the hole. Thus, any nonzero pressure hole measured by this apparatus would signify the presence of a normal-stress difference in the fluid.

1.
Bird
,
R. B.
,
Dai
,
G. C.
, and
Yarusso
,
B. J.
, 1983, “
The Rheology and Flow of Viscoplastic Materials
,”
Rev. Chem. Eng.
0167-8299,
1
, pp.
1
70
.
2.
Barnes
,
H. A.
, 1999, “
The Yield Stress—A Review or πάντα ρει—Everything Flows?
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
81
, pp.
133
178
.
3.
Fortin
,
M.
, and
Glowinski
,
R.
, 1983,
Augmented Lagrangian Methods
,
North-Holland
, Amsterdam.
4.
Fortin
,
A.
,
Côté
,
D.
, and
Tanguy
,
P. A.
, 1991, “
On the Imposition of Friction Boundary Conditions for the Numerical Simulation of Bingham Fluid Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
88
, pp.
97
109
.
5.
Huilgol
,
R. R.
, and
Panizza
,
M. P.
, 1995, “
On the Determination of the Plug Flow Region in Bingham Fluids Through the Application of Variational Inequalities
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
58
, pp.
207
217
.
6.
Bercovier
,
M.
, and
Engelman
,
M.
, 1980, “
A Finite-Element Method for Incompressible Non-Newtonian Flows
,”
J. Comput. Phys.
0021-9991,
36
, pp.
313
326
.
7.
O’Donovan
,
E. J.
, and
Tanner
,
R. I.
, 1984, “
Numerical Study of the Bingham Squeeze Film Problem
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
15
, pp.
75
83
.
8.
Papanastasiou
,
T. C.
, 1987, “
Flow of Materials With Yield
,”
J. Rheol.
0148-6055,
31
, pp.
385
404
.
9.
Abdali
,
S. S.
,
Mitsoulis
,
E.
, and
Markatos
,
N. C.
, 1992, “
Entry and Exit Flows of Bingham Fluids
,”
J. Rheol.
0148-6055,
36
, pp.
389
407
.
10.
Mitsoulis
,
E.
,
Abdali
,
S. S.
, and
Markatos
,
N. C.
, 1993, “
Flow Simulation of Herschel-Bulkley Fluids Through Extrusion Dies
,”
Can. J. Chem. Eng.
0008-4034,
71
, pp.
147
160
.
11.
Scott
,
P. S.
,
Mirza
,
F.
, and
Vlachopoulos
,
J.
, 1988, “
Finite-Element Simulation of Laminar Viscoplastic Flows With Regions of Recirculation
,”
J. Rheol.
0148-6055,
32
, pp.
387
400
.
12.
Scott
,
P. S.
,
Mirza
,
F. A.
, and
Vlachopoulos
,
J.
, 1986, “
A Finite Element Analysis of Laminar Flows Through Planar and Axisymmetric Abrupt Expansions
,”
Comput. Fluids
0045-7930,
14
, pp.
423
432
.
13.
Burgos
,
G. R.
, and
Alexandrou
,
A. N.
, 1999, “
Flow Development of Herschel-Bulkley Fluids in a Sudden Three-Dimensional Square Expansion
,”
J. Rheol.
0148-6055,
43
, pp.
485
498
.
14.
Alexandrou
,
A. N.
,
McGilvreay
,
T. M.
, and
Burgos
,
G.
, 2001, “
Steady Herschel-Bulkley Fluid Flow in Three-Dimensional Expansions
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
100
, pp.
77
96
.
15.
Alleborn
,
N.
,
Nandakumar
,
K.
,
Raszillier
,
H.
, and
Durst
,
F.
, 1997, “
Further Contributions on the Two-Dimensional Flow in a Sudden Expansion
,”
J. Fluid Mech.
0022-1120,
330
, pp.
169
188
.
16.
Mitsoulis
,
E.
, and
Huilgol
,
R. R.
, 2004, “
Entry Flows of Bingham Plastics in Expansions
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
122
, pp.
45
54
.
17.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics
, 2nd ed.
Wiley
, New York.
18.
Tanner
,
R. I.
, 2000,
Engineering Rheology
, 2nd ed.,
Oxford P.
, Oxford.
19.
Tanner
,
R. I.
, 1988, “
Pressure-Hole Errors—An Alternative Approach
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
28
, pp.
309
318
.
20.
Sugeng
,
F.
,
Phan-Thien
,
N.
, and
Tanner
,
R. I.
, 1988, “
A Boundary-Element Investigation of the Pressure-Hole Effect
,”
J. Rheol.
0148-6055,
32
, pp.
215
233
.
21.
Papanastasiou
,
T. C.
,
Malamataris
,
N.
, and
Ellwood
,
K.
, 1992, “
A New Outflow Boundary Condition
,”
Int. J. Numer. Methods Fluids
0271-2091,
14
, pp.
587
608
.
22.
Heinrich
,
J. C.
, and
Vionnet
,
C. A.
, 1995, “
On Boundary Conditions for Unbounded Flows
,”
Commun. Numer. Methods Eng.
1069-8299,
11
, pp.
179
185
.
23.
Park
,
S. J.
, and
Lee
,
S. J.
, 1999, “
On the Use of Open Boundary Condition Method in the Numerical Simulation of Non-isothermal Viscoelastic Flow
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
87
, pp.
197
214
.
24.
Mitsoulis
,
E.
, and
Zisis
,
T.
, 2001, “
Flow of Bingham Plastics in a Lid-Driven Square Cavity
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
101
, pp.
173
180
.
25.
Carter
,
R. E.
, and
Warren
,
R. C.
, 1987, “
Extrusion Stresses, Die Swell, and Viscous Heating Effects in Double-Base Propellants
,”
J. Rheol.
0148-6055,
31
, pp.
151
173
.
You do not currently have access to this content.