The present study is related to the rimming flow of non-Newtonian fluid on the inner surface of a horizontal rotating cylinder. Using a scale analysis, the main characteristic scales and nondimensional parameters, which describe the principal features of the process, are found. Exploiting the fact that one of the parameters is very small, an approximate asymptotic mathematical model of the process is developed and justified. For a wide range of fluids, a general constitutive law can be presented by a single function relating shear stress and shear rate that corresponds to a generalized Newtonian model. For this case, the run-off condition for rimming flow is derived. Provided the run-off condition is satisfied, the existence of a steady-state solution is proved. Within the bounds stipulated by this condition, film thickness admits a continuous solution, which corresponds to subcritical and critical flow regimes. It is proved that for the critical regime the solution has a corner on the rising wall of the cylinder. In the supercritical flow regime, a discontinuous solution is possible and a hydraulic jump may occur. It is shown that straightforward leading order steady-state theory can work well to study the shock location and height. For the particular case of a power-law model, the analytical solution of a steady-state equation for the fluid film thickness is found in explicit form. More complex rheological models, which show linear Newtonian behavior at low shear rates with transition to power law at moderate shear rates, are also considered. In particular, numerical computations were carried out for the Ellis model. For this model, some analytical asymptotic solutions have also been obtained in explicit form and compared with the results of numerical computations. Based on these solutions, the optimal values of parameters, which should be used in the Ellis equation for the correct simulation of the coating flows, are determined; the criteria that guarantee the steady-state continuous solutions are defined; and the size and location of the stationary hydraulic jumps, which form when the flow is in the supercritical state, are obtained for the different flow parameters.
Skip Nav Destination
Article navigation
January 2006
Special Section On The Fluid Mechanics And Rheology Of Nonlinear Materials At The Macro, Micro And Nano Scale
Three Regimes of Non-Newtonian Rimming Flow
Sergei Fomin
Sergei Fomin
Department of Mathematics and Statistics,
California State University
, Chico, CA 95929
Search for other works by this author on:
Sergei Fomin
Department of Mathematics and Statistics,
California State University
, Chico, CA 95929J. Fluids Eng. Jan 2006, 128(1): 107-112 (6 pages)
Published Online: July 4, 2005
Article history
Received:
June 17, 2004
Revised:
July 4, 2005
Citation
Fomin, S. (July 4, 2005). "Three Regimes of Non-Newtonian Rimming Flow." ASME. J. Fluids Eng. January 2006; 128(1): 107–112. https://doi.org/10.1115/1.2137342
Download citation file:
Get Email Alerts
Cited By
Related Articles
Inertia Effects in a Curved Non-Newtonian Squeeze Film
J. Appl. Mech (November,2001)
Long-Wave Instabilities in a Non-Newtonian Film on a Nonuniformly Heated Inclined Plane
J. Fluids Eng (March,2009)
Numerical Analysis of Wall Slip Effects on Flow of Newtonian and Non-Newtonian Fluids in Macro and Micro Contraction Channels
J. Fluids Eng (January,2007)
A Study of Roughness and Non-Newtonian Effects in Lubricated Contacts
J. Tribol (July,2005)
Related Proceedings Papers
Related Chapters
A Non-Newtonian Fluid Flow in a Pipe
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
Assessment of Flow Aggressiveness at an Ultrasonic Horn Cavitation Erosion Test Device by PVDF Pressure Measurements and 3D Flow Simulations
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Introduction
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow