The slow film flow down a doubly periodic bumpy surface is studied for the first time. Perturbations on the primary variables and the complex boundary conditions lead to a system of successive equations. The secondary flow and the free surface shape depend on the wavelength of the bumps and a surface tension-inclination parameter. There exists an optimum aspect ratio of the protuberances for maximal flow rate.

1.
Wang
,
C. Y.
, 1981, “
Liquid Film Flowing Slowly Down a Wavy Incline
,”
AIChE J.
0001-1541,
27
, pp.
207
212
.
2.
Bontozoglou
,
V.
, and
Papapolymeron
,
G.
, 1997, “
Laminar Film Flow Down a Wavy Incline
,”
Int. J. Multiphase Flow
0301-9322,
23
, pp.
69
79
.
3.
Scholle
,
M.
,
Wierschem
,
A.
, and
Aksel
,
N.
, 2001, “
Creeping Film Flow Down an Inclined Wavy Plane. Part I
,”
Z. Angew. Math. Mech.
0044-2267,
81
, pp.
S487
S488
.
4.
Wang
,
C. Y.
, 1984, “
Thin Film Flowing Down a Curved Surface
,”
Z. Angew. Math. Phys.
0044-2275,
35
, pp.
532
544
.
5.
Trifonov
,
Y. Y.
, 1998, “
Viscous Liquid Film Flows Over Periodic Surface
,”
Int. J. Multiphase Flow
0301-9322,
24
, pp.
1139
1161
.
6.
Wierschem
,
A.
,
Scholle
,
M.
, and
Aksel
,
N.
, 2001, “
Creeping Film Flow Down an Inclined Wavy Plane. Part II
,”
Z. Angew. Math. Mech.
0044-2267,
81
, pp.
S493
S494
.
7.
Pozrikidis
,
C.
, 1988, “
The Flow of a Liquid Film Along a Periodic Wall
,”
J. Fluid Mech.
0022-1120,
188
, pp.
275
300
.
8.
Bontozoglou
,
V.
, 2000, “
Laminar Film Flow Along a Periodic Wall
,”
Comput. Model. Eng. Sci.
1526-1492,
1
, pp.
133
142
.
9.
Spivak
,
M.
, 1975,
A Comprehensive Introduction to Differential Geometry
,
Publish or Perish Inc.
, Boston, Vol.
3
.
You do not currently have access to this content.